To investigate the dependence of LH pulsatility on energy availability (dietary energy intake minus exercise energy expenditure), we measured LH pulsatility after manipulating the energy availability of 29 regularly menstruating, habitually sedentary, young women of normal body composition for 5 d in the early follicular phase. Subjects expended 15 kcal/kg of lean body mass (LBM) per day in supervised exercise at 70% of aerobic capacity while consuming a clinical dietary product to set energy availability at 45 and either 10, 20, or 30 kcal/kg LBM.d in two randomized trials separated by at least 2 months. Blood was sampled daily during treatments and at 10-min intervals for the next 24 h. Samples were assayed for LH, FSH, estradiol (E2), glucose, beta-hydroxybutyrate, insulin, cortisol, GH, IGF-I, IGF-I binding protein (IGFBP)-1, IGFBP-3, leptin, and T3. LH pulsatility was unaffected by an energy availability of 30 kcal/kg LBM.d (P > 0.3), but below this threshold LH pulse frequency decreased, whereas LH pulse amplitude increased (all P < 0.04). This disruption was more extreme in women with short luteal phases (P < 0.01). These incremental effects most closely resembled the effects of energy availability on plasma glucose, beta-hydroxybutyrate, GH, and cortisol and contrasted with the dependencies displayed by the other metabolic hormones (simultaneously P < 0.05). These results demonstrate that LH pulsatility is disrupted only below a threshold of energy availability deep into negative energy balance and suggest priorities for future investigations into the mechanism that mediates the nonlinear dependence of LH pulsatility on energy availability.
To investigate whether measurements of cortisol responses to exercise are confounded by neglect of the hormone's circadian rhythm, we measured the serum and salivary cortisol responses of eight women to 40 min of 70% maximal oxygen consumption treadmill exercise beginning at 0800 and 2000. Responses were calculated relative to the usually employed preexercise concentrations and also to concentrations at the same times of another day while subjects were at rest. Compared with areas under response curves (AUCs) calculated relative to their circadian baselines, AUCs for serum and salivary cortisol calculated by reference to preexercise concentrations were underestimated (serum, P < 0.001; salivary, P < 0.01) by 93 and 84% in the morning and by 37 and 35% in the evening, respectively. Calculated by the usual preexercise baseline method, rises in serum and salivary cortisol were similarly underestimated. More accurately calculated relative to their circadian baselines, serum and salivary cortisol AUCs were similar (P = 0.63 and P = 0.37, respectively) in the morning and evening, as were their rises (P = 0.23 and P = 0.70, respectively). In future investigations of the existence and magnitude of cortisol responses, those responses must be calculated relative to the hormone's circadian baseline.
Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3(+/+)) and TLR3 knockout (TLR3(-/-)) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice.
In other energy-restricted mammals, a single large meal restores luteinizing hormone (LH) pulsatility within a few hours. To determine whether this is so in women, we measured LH pulsatility during the 5th day of low energy availability [dietary energy intake − exercise energy expenditure = 10 kcal ⋅ kg lean body mass (LBM)−1 ⋅ day−1] and during a 6th day of aggressive refeeding (90 kcal ⋅ kg LBM−1 ⋅ day−1) in 15 meals providing 4,100 kcal for an energy availability of 75 kcal ⋅ kg LBM−1 ⋅ day−1. Low energy availability raised β-hydroxybutyrate 1,000% ( P < 0.001) and reduced plasma glucose 15% ( P < 0.01), insulin 63% ( P < 0.001), and triiodothyronine 22% ( P < 0.005). In five of eight subjects, low energy availability also unambiguously suppressed LH pulse frequency 57% to 8.2 ± 1.5 pulses/24 h ( P < 10−4) and raised LH pulse amplitude 94% to 3.1 ± 0.3 IU/l ( P < 10−4), levels below the 5th and above the 95th percentile, respectively, in energy-balanced women. Aggressive refeeding restored β-hydroxybutyrate, glucose, and insulin, but not triiodothyronine. In the five women with unambiguously disrupted LH pulsatility, aggressive refeeding had no effect on LH pulse amplitude ( P > 0.9) and raised LH pulse frequency only slightly (2.4 ± 0.6 pulses/24 h, P = 0.04) and not above the fifth percentile. This striking contrast between women and other mammals may be another clue to the unidentified mechanism mediating the effect of energy availability on LH pulsatility.
Rat studies demonstrated that type II diabetes mellitus (T2DM) decreases both the production and bioavailability of nitric oxide (NO). L-arginine (LA) provides the precursor for the production of NO. We hypothesized that LA dietary supplementation will preserve NO production via endothelial nitric oxide synthase (eNOS) causing renal microvascular vasodilation and increased glomerular blood flow and thus increasing glomerular filtration rate (GFR). This would impede the formation of reactive oxygen species which contributes to cell damage and death. LA supplementation preserved GFR in the treated diabetic rats compared to untreated diabetic rats. We provide evidence that this effect may be due to increased levels of eNOS and urinary cyclic guanosine monophosphate, which leads to renal microvascular vasodilation. Plasma nitrotyrosine was decreased in the LA treated rats; however, plasma nitrite levels remained unaffected as expected. Marked improvements in glucose tolerance were also observed in the LA treated diabetic rats. These results demonstrate that LA supplementation preserves NO activity and may delay the onset of insulin resistance and renal dysfunction during hyperglycemic stress. These results suggest the importance of the NO pathway in consequent renal dysfunction and in the development of insulin resistance in diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.