Context:Land and aquatic plyometrics have clinical relevance for exercise, sport performance, and rehabilitation, yet study is limited comparing both.Objective:To compare the effects of land-based and aquatic-based plyometric-training programs on performance variables, muscle soreness, and range of motion (ROM).Setting:Aquatic facility and biomechanics laboratory.Subjects:Forty subjects randomly assigned to 3 groups: land (n = 13), water (n = 13), and control (n = 14).Main Outcome Measures:Performance variables, muscle soreness, and ROM were measured before and after an 8-week training period. An analysis of covariance (ANCOVA) and a Bonferroni post hoc test determined significance.Results:ANCOVA revealed significant differences between groups with respect to plantar-flexion ROM (P< .05). Pairedttest determined that the aquatic group significantly increased muscle power pretest to posttest (P< .05).Conclusions:Results indicate that aquatic plyometric training can be an alternative approach to enhancing performance.
BackgroundIn humans, serotonin has typically been investigated as a neurotransmitter. However, serotonin also functions as a hormone across animal phyla, including those lacking an organized central nervous system. This hormonal action allows serotonin to have physiological consequences in systems outside the central nervous system. Fluctuations in estrogen levels over the lifespan and during ovarian cycles cause predictable changes in serotonin systems in female mammals.DiscussionWe hypothesize that some of the physiological effects attributed to estrogen may be a consequence of estrogen-related changes in serotonin efficacy and receptor distribution. Here, we integrate data from endocrinology, molecular biology, neuroscience, and epidemiology to propose that serotonin may mediate the effects of estrogen. In the central nervous system, estrogen influences pain transmission, headache, dizziness, nausea, and depression, all of which are known to be a consequence of serotonergic signaling. Outside of the central nervous system, estrogen produces changes in bone density, vascular function, and immune cell self-recognition and activation that are consistent with serotonin's effects. For breast cancer risk, our hypothesis predicts heretofore unexplained observations of the opposing effects of obesity pre- and post-menopause and the increase following treatment with hormone replacement therapy using medroxyprogesterone.SummarySerotonergic mediation of estrogen has important clinical implications and warrants further evaluation.
To investigate whether measurements of cortisol responses to exercise are confounded by neglect of the hormone's circadian rhythm, we measured the serum and salivary cortisol responses of eight women to 40 min of 70% maximal oxygen consumption treadmill exercise beginning at 0800 and 2000. Responses were calculated relative to the usually employed preexercise concentrations and also to concentrations at the same times of another day while subjects were at rest. Compared with areas under response curves (AUCs) calculated relative to their circadian baselines, AUCs for serum and salivary cortisol calculated by reference to preexercise concentrations were underestimated (serum, P < 0.001; salivary, P < 0.01) by 93 and 84% in the morning and by 37 and 35% in the evening, respectively. Calculated by the usual preexercise baseline method, rises in serum and salivary cortisol were similarly underestimated. More accurately calculated relative to their circadian baselines, serum and salivary cortisol AUCs were similar (P = 0.63 and P = 0.37, respectively) in the morning and evening, as were their rises (P = 0.23 and P = 0.70, respectively). In future investigations of the existence and magnitude of cortisol responses, those responses must be calculated relative to the hormone's circadian baseline.
The purpose of this study was to investigate the effects of a six-week (16-17 training sessions) low velocity resistance training program (LV) on various performance measures as compared to a traditional strength (TS) and a traditional muscular endurance (TE) resistance training program. Thirty-four healthy adult females (21.1 +/- 2.7 y) were randomly divided into 4 groups: control (C), TS, TE, and LV. Workouts consisted of 3 exercises: leg press (LP), back squat (SQ), and knee extension (KE). Each subject was pre- and posttested for 1 repetition maximum (1RM), muscular endurance, maximal oxygen consumption (VO2max), muscular power, and body composition. After the pretesting, TS, TE, and LV groups attended a minimum of 16 out of 17 training sessions in which the LP, SQ, and KE were performed to fatigue for each of 3 sets. For each training session, TS trained at 6-10 RM and TE trained at 20-30 RM both with 1-2 second concentric/1-2 second eccentric; and LV trained at 6-10 RM, with 10 second concentric/4 s eccentric. Statistical significance was determined at an alpha level of 0.05. LV increased relative LP and KE 1 RM, but the percent increase was smaller than TS, and not different from C in the SQ. For muscular endurance, LV improved similarly to TE for LP and less than TS and TE for KE. Body composition improved for all groups including C (significant main effect). In conclusion, muscular strength improved with LV training however, TS showed a larger improvement. Muscular endurance improved with LV training, but not above what TE or TS demonstrated. For all other variables, there were no significant improvements for LV beyond what C demonstrated.
The purpose of this study was to evaluate the use of traditional resistance training equipment in the measurement of muscular power. This was accomplished by measuring the velocity of movement through a measured distance during maximal effort lifts using a Smith rack. The reliability of the method was established using 10 male volunteers who performed both bench press and squat exercises in a Smith rack. Maximal power output was determined at 30, 40, 50, 60, 70, 80, and 90% of the subject's 1 repetition maximum (1RM). Test-retest power values were not statistically different. Another 15 male volunteers who had previous muscle biopsy data from the vastus lateralis muscle performed the same maximal power output evaluation. There were no significant relationships between peak power outputs and fiber-type expressions when linear regressions were performed. The power curve produced by graphing power output vs. the percentage of 1RM indicates that peak power output occurs between 50 and 70% of 1RM for the squat and between 40 and 60% of 1RM for the bench press. These data indicate that this method of evaluation of muscle power is reliable, although it is not predictive of muscle fiber-type percentages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.