Evidence suggests that a diet high in fruits and vegetables may decrease the risk of chronic diseases, such as cardiovascular disease and cancer, and phytochemicals including phenolics, flavonoids and carotenoids from fruits and vegetables may play a key role in reducing chronic disease risk. Apples are a widely consumed, rich source of phytochemicals, and epidemiological studies have linked the consumption of apples with reduced risk of some cancers, cardiovascular disease, asthma, and diabetes. In the laboratory, apples have been found to have very strong antioxidant activity, inhibit cancer cell proliferation, decrease lipid oxidation, and lower cholesterol. Apples contain a variety of phytochemicals, including quercetin, catechin, phloridzin and chlorogenic acid, all of which are strong antioxidants. The phytochemical composition of apples varies greatly between different varieties of apples, and there are also small changes in phytochemicals during the maturation and ripening of the fruit. Storage has little to no effect on apple phytochemicals, but processing can greatly affect apple phytochemicals. While extensive research exists, a literature review of the health benefits of apples and their phytochemicals has not been compiled to summarize this work. The purpose of this paper is to review the most recent literature regarding the health benefits of apples and their phytochemicals, phytochemical bioavailability and antioxidant behavior, and the effects of variety, ripening, storage and processing on apple phytochemicals.
Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods.
Background: Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important.
Oxidants in A. rubrum are also found in A. saccharum and A. saccharinum, and the ingestion of A. saccharum and A. saccharinum poses a potential threat to horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.