Individuals carrying melanocortin 1 receptor gene variants have an increased risk for the development of cutaneous melanoma. Melanocortin 1 receptor gene variants are also associated with other risk factors for melanoma such as fair skin and red hair. We evaluated the relationship of melanocortin 1 receptor gene variants, fair skin, red hair and the development of melanoma in 123 patients with cutaneous melanoma and 385 control subjects. To analyze the association between melanocortin 1 receptor gene variants and skin type or hair color we also made use of 453 patients with nonmelanoma skin cancer. We analyzed the coding sequence of the melanocortin 1 receptor gene region by single-stranded conformation polymorphism analysis, followed by DNA sequence analysis. Risk of melanoma dependent on the various melanocortin 1 receptor variant alleles was estimated by exposure odds ratios. The analyses of all different melanocortin 1 receptor gene variants combined, showed that the presence of melanocortin 1 receptor gene variants amounted to a higher melanoma risk, which, in stratified analyses, was independent of skin type and hair color. The odds ratios after adjusting for skin type were 3.6 (95% CI 1.7-7.2) for two variants and 2.7 (95% CI 1.5-5.1) for one variant, respectively. Compound heterozygotes and homozygotes for the Val60Leu, Val92Met, Arg142His, Arg151Cys, Arg160Trp, Arg163Gln, and His260Pro variants had odds ratios of about 4 to develop melanoma, whereas heterozygotes for these variants had half the risk. The presence of the melanocortin 1 receptor gene variant Asp84Glu appeared to impose the highest risk for cutaneous melanoma with odds ratios of 16.1 (95% CI 2.3-139.0) and 8.1 (95% CI 1.2-55.9) in compound heterozygotes and heterozygotes, respectively. The broad confidence intervals, when the different variants were analyzed separately, however, do not allow drawing definite conclusions about the magnitude of these risks. Of the more frequently occurring melanocortin 1 receptor variant alleles the Asp84Glu, Arg142His, Arg151Cys, Arg160Trp, His260Pro, and Asp294His variants were strongly associated with both fair skin and red hair. The Val60Leu, Val92Met, and Arg163Gln variant alleles, however, were only weakly or not associated with fair skin type and/or red hair, which further illustrates the finding that skin type, hair color, and melanoma are independent outcomes of the presence of melanocortin 1 receptor gene variants. We conclude that numerous melanocortin 1 receptor variants predispose to cutaneous melanoma and that possibly the Asp84Glu variant confers the highest risk. This predisposition is largely independent of skin type and hair color.
CDKN2A is the major melanoma susceptibility gene so far identified, but only 40% of three or more case families have identified mutations. A comparison of mutation detection rates was carried out by "blind" exchange of samples across GenoMEL, the Melanoma Genetics Consortium, to establish the false negative detection rates. Denaturing high performance liquid chromatography (DHPLC) screening results from 451 samples were compared to screening data from nine research groups in which the initial mutation screen had been done predominantly by sequencing. Three samples with mutations identified at the local centres were not detected by the DHPLC screen. No additional mutations were detected by DHPLC. Mutation detection across groups within GenoMEL is carried out to a consistently high standard. The relatively low rate of CDKN2A mutation detection is not due to failure to detect mutations and implies the existence of other high penetrance melanoma susceptibility genes.
There is a Blood Commentary on this article in this issue. 8. Brissot E, Labopin M, Beckers MM, et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica. 2015;100(3):392-399. 9. Zhang FH, Ling YW, Zhai X, et al. The effect of imatinib therapy on the outcome of allogeneic stem cell transplantation in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology. 2013; 18(3):151-157. 10. Pfeifer H, Wassmann B, Bethge W, et al; GMALL Study Group. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 2013;27(6):1254-1262. 11. Kebriaei P, Saliba R, Rondon G, et al. Long-term follow-up of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcomes. Biol Blood Marrow Transplant. 2012;18(4):584-592. 12. Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128(4):504-507. 13. Soverini S, Vitale A, Poerio A, et al. Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96(4):552-557. 14. Soverini S, De Benedittis C, Papayannidis C, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosomepositive acute lymphoblastic leukemia from the imatinib to the secondgeneration tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120(7):1002-1009.
Hemoglobinopathies are the most common monogenic disorders in the world with an ever increasing global disease burden each year. As most hemoglobinopathies show recessive inheritance carriers are usually clinically silent. Programmes for preconception and antenatal carrier screening, with the option of prenatal diagnosis are considered beneficial in many endemic countries. With the development of genetic tools such as Array analysis and Next Generation Sequencing in addition to state of the art screening at the hematologic, biochemic and genetic level, have contributed to the discovery of an increasing number of rare rearrangements and novel factors influencing the disease severity over the recent years. This review summarizes the basic requirements for adequate carrier screening analysis, the importance of genotype-phenotype correlation and how this may lead to the unrevealing exceptional interactions causing a clinically more severe phenotype in otherwise asymptomatic carriers. A special group of patients are β-thalassemia carriers presenting with features of β-thalassemia intermedia of various clinical severity. The disease mechanisms may involve duplicated α-globin genes, mosaic partial Uniparental Isodisomy of chromosome 11p15.4 where the HBB gene is located or haploinsufficiency of a non-linked gene SUPT5H on chromosome 19q, first described in two Dutch families with β-thalassemia trait without variants in the HBB gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.