BACKGROUND-Brugada syndrome (BrS) is a common heritable channelopathy. Mutations in the SCN5A-encoded sodium channel (BrS1) culminate in the most common genotype.
Background-The mechanism of ECG changes and arrhythmogenesis in Brugada syndrome (BS) patients is unknown. Methods and Results-A BS patient without clinically detected cardiac structural abnormalities underwent cardiac transplantation for intolerable numbers of implantable cardioverter/defibrillator discharges. The patient's explanted heart was studied electrophysiologically and histopathologically. Whole-cell currents were measured in HEK293 cells expressing wild-type or mutated sodium channels from the patient. The right ventricular outflow tract (RVOT) endocardium showed activation slowing and was the origin of ventricular fibrillation without a transmural repolarization gradient. Conduction restitution was abnormal in the RVOT but normal in the left ventricle. Right ventricular hypertrophy and fibrosis with epicardial fatty infiltration were present. HEK293 cells expressing a G1935S mutation in the gene encoding the cardiac sodium channel exhibited enhanced slow inactivation compared with wild-type channels.Computer simulations demonstrated that conduction slowing in the RVOT might have been the cause of the ECG changes. Conclusions-In this patient with BS, conduction slowing based on interstitial fibrosis, but not transmural repolarization differences, caused the ECG signs and was the origin of ventricular fibrillation.
Brugada syndrome is a genetic disease associated with sudden cardiac death that is characterized by ventricular fibrillation and right precordial ST segment elevation on ECG. Loss-of-function mutations in SCN5A, which encodes the predominant cardiac sodium channel α subunit Na V 1.5, can cause Brugada syndrome and cardiac conduction disease. However, SCN5A mutations are not detected in the majority of patients with these syndromes, suggesting that other genes can cause or modify presentation of these disorders. Here, we investigated SCN1B, which encodes the function-modifying sodium channel β1 subunit, in 282 probands with Brugada syndrome and in 44 patients with conduction disease, none of whom had SCN5A mutations. We identified 3 mutations segregating with arrhythmia in 3 kindreds. Two of these mutations were located in a newly described alternately processed transcript, β1B. Both the canonical and alternately processed transcripts were expressed in the human heart and were expressed to a greater degree in Purkinje fibers than in heart muscle, consistent with the clinical presentation of conduction disease. Sodium current was lower when Na V 1.5 was coexpressed with mutant β1 or β1B subunits than when it was coexpressed with WT subunits. These findings implicate SCN1B as a disease gene for human arrhythmia susceptibility.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.