Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. Intestinal bacteria play a key role; however no causative pathogen has been identified. The purpose of this study was to determine if there are differences in microbial patterns which may be critical to the development of this disease. Fecal samples from twenty preterm infants, ten with NEC and ten matched controls (including four twin pairs) were obtained from patients in a single site Level III neonatal intensive care unit. Bacterial DNA from individual fecal samples were PCR amplified and subjected to terminal restriction fragment length polymorphism analysis and library sequencing of the 16S rRNA gene to characterize diversity and structure of the enteric microbiota. The distribution of samples from NEC patients distinctly clustered separately from controls. Intestinal bacterial colonization in all preterm infants was notable for low diversity. Patients with NEC had even less diversity, an increase in abundance of Gammaproteobacteria, a decrease in other bacteria species, and had received a higher mean number of previous days of antibiotics. Our results suggest that NEC is associated with severe lack of microbiota diversity which may accentuate the impact of single dominant microorganisms favored by empiric and wide-spread use of antibiotics.
Balance among the complex interactions of the gut microbial community is important for intestinal health. Probiotic bacteria can improve bacterial balance and have been used to treat gastrointestinal diseases. Neonatal necrotizing enterocolitis (NEC) is a life-threatening inflammatory bowel disorder primarily affecting premature infants. NEC is associated with extensive inflammatory NF-κB signaling activation as well as intestinal barrier disruption. Clinical studies have shown that probiotic administration may protect against NEC, however there are safety concerns associated with the ingestion of large bacterial loads in preterm infants. Bacteria-free conditioned media (CM) from certain probiotic organisms have been shown to retain bioactivity including anti-inflammatory and cytoprotective properties without the risks of live organisms. We hypothesized that the CM from Lactobacillus acidophilus (La), Bifidobacterium infantis (Bi), and Lactobacillus plantarum (Lp), used separately or together would protect against NEC. A rodent model with intestinal injury similar to NEC was used to study the effect of CM from Lp, La/Bi, and La/Bi/Lp on the pathophysiology of NEC. All the CM suppressed NF-κB activation via preserved IκBα expression and this protected IκBα was associated with decreased liver activity of the proteasome, which is the degrading machinery for IκBα. These CM effects also caused decreases in intestinal production of the pro-inflammatory cytokine TNF-α, a downstream target of the NF-κB pathway. Combined La/Bi and La/Bi/Lp CM in addition protected intestinal barrier function by maintaining tight junction protein ZO-1 levels and localization at the tight junction. Double combined La/Bi CM significantly reduced intestinal injury incidence from 43% to 28% and triple combined La/Bi/Lp CM further reduced intestinal injury incidence to 20%. Thus, this study demonstrates different protective mechanisms and synergistic bioactivity of the CM from different organisms in ameliorating NEC-like intestinal injury in an animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.