The ferric enterobactin receptor (FepA) is a high-affinity ligand-specific transport protein in the outer membrane of Gram-negative bacteria. Deletion of the cell-surface ligand-binding peptides of FepA generated mutant proteins that were incapable of high-affinity uptake but that instead formed nonspecific, passive channels in the outer membrane. Unlike native FepA, these pores acted independently of the accessory protein TonB, which suggests that FepA is a gated porin and that TonB acts as its gatekeeper by facilitating the entry of ligands into the FepA channel. The sequence homology among TonB-dependent proteins suggests that all ligand-specific outer membrane receptors may function by this gated-porin mechanism.
The ferric enterobactin receptor, FepA, is a TonB-dependent gated porin that transports the siderophore ferric enterobactin across the outer membrane of gram-negative bacteria. We have created two site-directed mutants of Escherichia coli FepA, in both cases introducing a cysteine residue into the putative ligand-binding domain. The introduced cysteines were then modified with nitroxide spin labels for structural and dynamic studies using electron spin resonance (ESR) spectroscopy. The mutants were fully functional, as indicated by their ability to grow under iron-limiting conditions, their uptake of [59Fe]enterobactin, and their sensitivity to colicin B. Labeling of the mutant FepA receptors proceeded easily upon incubation with sulfhydryl-specific spin labels, e.g. MTSL, (1-oxy-2,2,5,5-tetramethylpyrrolidin-3-yl)methyl methanethiosulfonate. In contrast, spin labeling of the two native cysteines (Cys486 and Cys493) within wild-type FepA occurred only after treatment with a thiol reducing agent and partial denaturation in urea, suggesting that the native cysteines are disulfide-linked. ESR spectra showed a high degree of motional restriction for all three sites. Continuous wave (CW) saturation studies indicated that one of the mutationally introduced sites (Cys280) was surface-localized as evidenced by its exposure to the aqueous paramagnetic relaxation agent chromium oxalate and its low accessibility to O2. The other (Cys310) apparently occupies a site near the membrane/aqueous interface. The native cysteines occupy a site tightly packed within the protein structure with low accessibility to both CROX and O2. A shift in both conventional and saturation-transfer ESR spectra of MTSL-labeled E280C and E310C (but not MTSL-labeled wild type) FepA was observed upon addition of ferric enterobactin. The ESR spectral shift was dependent on ferric enterobactin concentration and did not occur with siderophores not recognized by FepA. Ferric enterobactin binding did not alter the CW saturation properties of MTSL bound to these sites, but did influence their accessibility to O2. These results provide consistent evidence for a ligand-specific conformational change in the surface peptides of FepA upon the binding of ferric enterobactin.
FepA is an Escherichia coli outer membrane receptor protein for the siderophore ferric enterobactin. Prior studies conducted in vivo suggested that FepA and other TonB-dependent outer membrane proteins transport ligands by a gated-channel mechanism. To corroborate and extend these findings we have determined the permeability properties of the FepA channel in vitro, by measuring the diffusion rates of hydrophilic nonelectrolytes through the FepA channel in liposome swelling experiments. Like porins, the FepA deletion mutant ARV showed a size-dependent permeability to oligosaccharides, indicating that it forms a nonspecific, hydrophilic pore. Unlike OmpF and other E. coli porins, however, ARV proteoliposomes transported stachyose (666 Da) and ferrichrome (740 Da). These data, and other uptake results with a series of maltodextrins of increasing size, confirm the existence of a channel domain within FepA that is considerably larger than OmpF-type pores. These results represent a reconstitution of the channel function of a TonB-dependent receptor protein and establish that FepA contains the largest channel that has been characterized in the E. coli outer membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.