Polymers with donor–acceptor Stenhouse adduct (DASA) groups were synthesized using RAFT methods to evaluate the effect of polymer length (20 vs. 100 DP units) and backbone rigidity (acrylate and methacrylate blocks).
Stimuli‐responsive drug release from a nanocarrier triggered by light enables the control of the amount of drug locally. Here, block copolymer micelles based on poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) as the hydrophilic block and a polymer with pendant donor–acceptor Stenhouse adducts (DASA) are used as a means to trigger the release of drugs under green light. The micelles are loaded with ellipticine to yield light‐responsive nanoparticles with sizes of around 35 nm according to transmission electron microscopy (TEM) analysis. Two micelles with a drug loading content of 4.75 and 7.4 wt% are prepared, but the micelle with the higher drug loading content leads to substantial protein adsorption. The release of ellipticine from the micelle, which is monitored using the polarity‐sensitive fluorescence of ellipticine, can be switched on by light and off by thermal recovery of DASA in the dark. The micelles are readily taken up by Michigan Cancer Foundation‐7 breast cancer cells. Subsequent light irradiation leads to enhanced drug release inside the cell as seen by the enhanced fluorescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.