Mucopolysaccharidosis type I (MPS I) was added to the Recommended Uniform Screening Panel for newborn screening in 2016, highlighting recognition that early treatment of MPS I is critical to stem progressive, irreversible disease manifestations. Enzyme replacement therapy (ERT) is an approved treatment for all MPS I phenotypes, but because the severe form (MPS IH, Hurler syndrome) involves rapid neurocognitive decline, the impermeable blood-brain-barrier is considered an obstacle for ERT. Instead, hematopoietic cell transplantation (HCT) has long been recommended, as it is believed to be the only therapy that arrests neurocognitive decline. Yet ERT monotherapy has never been compared to HCT, because it is unethically unacceptable to evaluate a therapeutic alternative to one shown to treat Central Nervous System (CNS) disease. An unusual opportunity to address this question is presented with this clinical report of a 16-year-old female with MPS IH treated only with ERT since her diagnosis at age 2. Neurological functioning was stable until cervical spinal cord compression at age 8, hydrocephalus at age 11, and neurocognitive declines beginning at age 10. Somatic disease burden is significant for first degree AV block, restrictive lung disease, bilateral hearing loss, severe corneal clouding, joint pain/limitations requiring mobility assistance, and short stature. This patient's extended survival and prolonged intact neurocognitive functioning depart from the untreated natural history of MPS IH. Disease burden typically controlled by HCT emerged. Although not anticipated to provide benefit for CNS disease, ERT may have provided some amelioration or slowing of neurocognitive deterioration.
GM1-gangliosidosis is a lysosomal disease resulting from a deficiency in the hydrolase β-galactosidase (β-gal) and subsequent accumulation of gangliosides, primarily in neuronal tissue, leading to progressive neurological deterioration and eventually early death. Lysosomal diseases with neurological involvement have limited non-invasive therapies due to the inability of lysosomal enzymes to cross the blood-brain barrier (BBB). A novel fusion enzyme, labeled mTfR-GLB1, was designed to act as a ferry across the BBB by fusing β-gal to the mouse monoclonal antibody against the mouse transferrin receptor and tested in a murine model of GM1-gangliosidosis (β-gal −/− ). Twelve hours following a single intravenous dose of mTfR-GLB1 (5.0 mg/kg) into adult β-gal −/− mice showed clearance of enzyme activity in the plasma and an increase in β-gal enzyme activity in the liver and spleen. Long-term efficacy of mTfR-GLB1 was assessed by treating β-gal −/− mice intravenously twice a week with a low (2.5 mg/kg) or high (5.0 mg/kg) dose of mTfR-GLB1 for 17 weeks. Long-term studies showed high dose mice gained weight normally compared to vehicle-treated β-gal −/− mice, which are significantly heavier than heterozygous controls. Behavioral assessment at six months of age using the pole test showed β-gal −/− mice treated with mTfR-GLB1 had improved motor function. Biochemical analysis showed an increase in β-gal enzyme activity in the high dose group from negligible levels to 20% and 11% of heterozygous levels in the liver and spleen, respectively. Together, these data show that mTfR-GLB1 is a catalytically active β-gal fusion enzyme in vivo that is readily taken up into tissues. Despite these indications of bioactivity, behavior tests other than the pole test, including the Barnes maze, inverted screen, and accelerating rotarod, showed limited or no improvement of treated mice compared to β-gal −/− mice receiving vehicle only. Further, administration of mTfR-GLB1 was insufficient to create measurable increases in β-gal enzyme activity in the brain or reduce ganglioside content (biochemically and morphologically).
Gaucher disease is an autosomal recessive metabolic disorder caused by mutations in GBA1 , which encodes for the lysosomal hydrolase enzyme, β-glucocerebrosidase. The resulting misfolded protein can trigger endoplasmic reticulum stress and an unfolded protein response within the affected cells. The enzyme deficiency leads to accumulation of its substrates, glucosylceramide and glucosylsphingosine, within macrophage lysosomes and with prominent disease manifestations in macrophage rich tissues. Resultant lysosomal pathology and impaired autophagy leads to redox imbalance, mitochondrial dysfunction and intracellular oxidative stress. Here we have systematically examined a role for oxidative stress in individuals affected by Gaucher disease. We compared multiple oxidative stress biomarkers in plasma and red blood cell samples from patients who are currently untreated, with those who are stable on standard-of-care therapy, and with healthy controls. We found significant differences in key oxidative stress biomarkers in untreated patients compared to healthy control. In treated patients, results generally fell between the controls and the untreated patients. Interestingly, even asymptomatic and minimally symptomatic untreated patients had evidence of significant systemic oxidative stress. We conclude that underlying oxidative stress may contribute to Gaucher disease pathophysiology including long-term adverse outcomes such as Parkinsonism and malignancies. Therapies targeting oxidative stress may prove useful as adjuvant treatments for Gaucher disease and other lysosomal storage disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.