Despite their simple formulation, short-range classical antiferromagnetic Ising models on frustrated lattices give rise to exotic phases of matter, in particular, due to their macroscopic ground-state degeneracy. Recent experiments on artificial spin systems comprising arrays of chirally coupled nanomagnets provide a significant strengthening of the nearest-neighbor couplings compared to systems with dipolar-coupled nanomagnets. This opens the way to design artificial spin systems emulating Ising models with nearest-neighbor couplings. In this paper, we compare the results of an extensive investigation with tensor network and Monte Carlo simulations of the nearest-and farther-neighbor (J 1 − J 2 − J 3|| ) kagome Ising antiferromagnet with the experimental spinspin correlations of a kagome lattice of chirally coupled nanomagnets. Even though the ratios between the farther-neighbor couplings and the nearest-neighbor coupling estimated from micromagnetic simulations are much smaller than for dipolar-coupled nanomagnets, we show that they still play an essential role in the selection of the correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.