We develop a technique for calculating three-dimensional classical partition functions using projected entangled-pair states (PEPS). Our method is based on variational PEPS optimization algorithms for two-dimensional quantum spin systems, and allows us to compute free energies directly in the thermodynamic limit. The main focus of this work is classical frustration in three-dimensional many-body systems leading to an extensive ground-state degeneracy. We provide high-accuracy results for the residual entropy of the dimer model on the cubic lattice, water-ice I h and water-ice Ic. In addition, we show that these systems are in a Coulomb phase by computing the dipolar form of the correlation functions. As a further benchmark of our methods, we calculate the critical temperature and exponents of the Ising model on the cubic lattice.
We revisit the question of describing critical spin systems and field theories using matrix product states, and formulate a scaling hypothesis in terms of operators, eigenvalues of the transfer matrix, and lattice spacing in the case of field theories. Critical exponents and central charge are determined by optimizing the exponents such as to obtain a data collapse. We benchmark this method by studying critical Ising and Potts models, where we also obtain a scaling ansatz for the correlation length and entanglement entropy. The formulation of those scaling functions turns out to be crucial for studying critical quantum field theories on the lattice. For the case of λφ 4 with mass µ 2 and lattice spacing a, we demonstrate a double data collapse for the correlation length δξ(µ, λ, D) = ξ (α − αc)(δ/a) −1/ν with D the bond dimension, δ the gap between eigenvalues of the transfer matrix, and αc = µ 2 R /λ the parameter which fixes the critical quantum field theory.
We apply variational tensor-network methods for simulating the Kosterlitz-Thouless phase transition in the classical two-dimensional XY model. In particular, using uniform matrix product states (MPS) with non-abelian O(2) symmetry, we compute the universal drop in the spin stiffness at the critical point. In the critical low-temperature regime, we focus on the MPS entanglement spectrum to characterize the Luttinger-liquid phase. In the high-temperature phase, we confirm the exponential divergence of the correlation length and estimate the critical temperature with high precision.Our MPS approach can be used to study generic two-dimensional phase transitions with continuous symmetries.
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.