Pharmacophagy involves the sequestration of specialised plant metabolites for non-nutritive purposes and commonly occurs in insects. Here we investigate pharmacophagy in the turnip sawfly, Athalia rosae, where adults not only collect specialised metabolites (clerodanoids) from a plant (Ajuga reptans), but also from the exterior of conspecifics via fighting. Using behavioural assays, chemical analytics, and RNAseq we show that when individuals nibble on conspecifics that have already acquired clerodanoids from A. reptans leaves, this nibbling results in the transfer of compounds between individuals. Furthermore, unlike other pharmacophagous insects, the acquisition of clerodanoids by A. rosae from the leaves of A. reptans does not induce the upregulation of known detoxification or sequestration genes and pathways. In contrast, pharmacophagous nibbling on conspecifics results in the upregulation of metabolic pathways associated with elevated metabolic rates and increased energy consumption. It therefore seems that individuals attack conspecifics to acquire clerodanoids despite the apparent metabolic costs of this form of pharmacophagy compared to clerodanoid uptake from a plant. Changes in the metabolic phenotype of A.rosae individuals consequently has profound consequences for social interactions with possible ramifications for their social niche.
Brassicaceae plants contain glucosinolates, which are hydrolysed by myrosinases to toxic products such as isothiocyanates and nitriles, acting as defences. Herbivores have evolved various detoxification strategies, which are reviewed here. Larvae of Phaedon cochleariae (Coleoptera: Chrysomelidae) metabolise hydrolysis products of benzenic glucosinolates by conjugation with aspartic acid. In this study, we investigated whether P. cochleariae uses the same metabolic pathway for structurally different glucosinolates, whether the metabolism differs between adults and larvae and which hydrolysis products are formed as intermediates. Feeding experiments were performed with leaves of watercress (Nasturtium officinale, Brassicaceae) and pea (Pisum sativum, non-Brassicaceae), to which glucosinolates with structurally different side chains (benzenic, indole or aliphatic) or their hydrolysis products were applied. Samples were analysed by UHPLC-QTOF-MS/MS or TD–GC–MS. The same aspartic acid conjugates as previously identified in larvae were also detected as major metabolites of benzenic glucosinolates in adults. Indol-3-ylmethyl glucosinolate was mainly metabolised to N-(1H-indol-3-ylcarbonyl) glutamic acid in adults and larvae, while the metabolism of 2-propenyl glucosinolate remains unclear. The metabolism may thus proceed primarily via isothiocyanates rather than via nitriles, while the hydrolysis occurs independently of plant myrosinases. A detoxification by conjugation with these amino acids is not yet known from other Brassicaceae-feeders.
Herbivores face a broad range of defences when feeding on plants. By mixing diets, polyphagous herbivores are assumed to benefit during their development by gaining a better nutritional balance and reducing the intake of toxic compounds from individual plant species. Nevertheless, they also show strategies to metabolically cope with plant defences. In this study, we investigated the development of the polyphagous tansy leaf beetle, Galeruca tanaceti (Coleoptera: Chrysomelidae), on mono diets consisting of one plant species [cabbage (Brassica rapa), Brassicaceae; lettuce (Lactuca sativa), or tansy (Tanacetum vulgare), Asteraceae] vs. two mixed diets, both containing tansy. Leaves of the three species were analysed for contents of water, carbon and nitrogen, the specific leaf area (SLA) and trichome density. Furthermore, we studied the insect metabolism of two glucosinolates, characteristic defences of Brassicaceae. Individuals reared on cabbage mono diet developed fastest and showed the highest survival, while the development was slowest for individuals kept on tansy mono diet. Cabbage had the lowest water content, while tansy had the highest water content, C/N ratio and trichome density and the lowest SLA. Lettuce showed the lowest C/N ratio, highest SLA and no trichomes. Analysis of insect samples with UHPLC-DAD-QTOF-MS/MS revealed that benzyl glucosinolate was metabolised to N-benzoylglycine, N-benzoylalanine and N-benzoylserine. MALDI-Orbitrap-MS imaging revealed the localisation of these metabolites in the larval hindgut region. 4-Hydroxybenzyl glucosinolate was metabolised to N-(4-hydroxybenzoyl)glycine. Our results highlight that G. tanaceti deals with toxic hydrolysis products of glucosinolates by conjugation with different amino acids, which may enable this species to develop well on cabbage. The high trichome density and/or specific plant chemistry may lower the accessibility and/or digestibility of tansy leaves, leading to a poorer beetle development on pure tansy diet or diet mixes containing tansy. Thus, diet mixing is not necessarily beneficial, if one of the plant species is strongly defended.
Development of a polyphagous leaf beetle on di erent host plant species and its detoxification of glucosinolates. Front. Ecol. Evol. :. doi: .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.