We use seed count data from a New Zealand mono-specific mountain beech forest to test for decadal trends in seed production along an elevation gradient in relation to changes in climate. Seedfall was collected (1965 to 2009) from seed trays located on transect lines at fixed elevations along an elevation gradient (1020 to 1370 m). We counted the number of seeds in the catch of each tray, for each year, and determined the number of viable seeds. Climate variables were obtained from a nearby (<2 km) climate station (914-m elevation). Variables were the sum or mean of daily measurements, using periods within each year known to correlate with subsequent interannual variation in seed production. To determine trends in mean seed production, at each elevation, and climate variables, we used generalized least squares (GLS) regression. We demonstrate a trend of increasing total and viable seed production, particularly at higher elevations, which emerged from marked interannual variation. Significant changes in four seasonal climate variables had GLS regression coefficients consistent with predictions of increased seed production. These variables subsumed the effect of year in GLS regressions with a greater influence on seed production with increasing elevation. Regression models enforce a view that the sequence of climate variables was additive in their influence on seed production throughout a reproductive cycle spanning more than 2 years and including three summers. Models with the most support always included summer precipitation as the earliest variable in the sequence followed by summer maximum daily temperatures. We interpret this as reflecting precipitation driven increases in soil nutrient availability enhancing seed production at higher elevations rather than the direct effects of climate, stand development or rising atmospheric CO2 partial pressures. Greater sensitivity of tree seeding at higher elevations to changes in climate reveals how ecosystem responses to climate change will be spatially variable.
Abstract:Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands. Those forests are discontinuous and show a low regeneration potential resulting from the cumulative effects of harsh climatic conditions and very short fire intervals. In a climate change context, and because the forest industry is interested in opening new territories to forest management in the north, it is crucial to better understand how and why fire risk varies from the north to the south at the transition between the discontinuous and continuous boreal forest. We used time-since-fire (TSF) data from fire archives as well as a broad field campaign in Quebec's coniferous boreal forests along four north-south transects in order to reconstruct the fire history of the past 150 to 300 years. We performed survival analyses in each transect in order to (1) determine if climate influences the fire risk along the latitudinal gradient; (2) fractionate the transects into different fire risk zones; and (3) quantify the fire cycle-defined as the time required to burn an area equivalent to the size of the study area-of each zone and compare its estimated value with current fire activity. Results suggest that drought conditions are moderately to highly responsible for the increasing fire risk from south to north in the three westernmost transects. No climate influence was observed in the last one, possibly because of its complex physical environment. Fire cycles are shortening from south to north, and from east to west. Limits between high and low fire risk zones are consistent with the limit between discontinuous and continuous forests, established based on recent fire activity. Compared to the last 40 years, fire cycles of the last 150-300 years are shorter. Our results suggest that as drought episodes are expected to become more frequent in the future, fire activity might increase significantly, possibly leading to greater openings within forests. However, if fire activity increases and yet remains within the range of variability of the last 150-300 years, the limit between open and closed forests should stay relatively stable.
Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree‐ring fire scars provide valuable perspectives on fire regimes, including centuries‐long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree‐ring fire‐scar network (NAFSN), which contains 2562 sites, >37,000 fire‐scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000‐m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire‐scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under‐sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non‐Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually‐ to sub‐annually‐resolved tree‐ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America.
Abstract. Wildland fires are the main natural disturbance shaping forest structure and composition in
Boreal forests subject to low fire activity are complex ecosystems in terms of structure and dynamics. They have a high ecological value as they contain important proportions of old forests that play a crucial role in preserving biodiversity and ecological functions. They also sequester important amounts of carbon at the landscape level. However, the role of time since fire in controlling the different processes and attributes of those forests is still poorly understood. The Romaine River area experiences a fire regime characterized by very rare but large fires and has recently been opened to economic development for energy and timber production. In this study, we aimed to characterize this region in terms of live aboveground biomass, merchantable volume, stand structure and composition, and to establish relations between these attributes and the time since the last fire. Mean live aboveground biomass and merchantable volume showed values similar to those of commercial boreal coniferous forests. They were both found to increase up to around 150 years after a fire before declining. However, no significant relation was found between time since fire and stand structure and composition. Instead, they seemed to mostly depend on stand productivity and non-fire disturbances. At the landscape level, this region contains large amounts of biomass and carbon stored resulting from the long fire cycles it experiences. Although in terms of merchantable volume these forests seemed profitable for the forest industry, a large proportion were old forests or presented structures of old forests. Therefore, if forest management was to be undertaken in this region, particular attention should be given to these old forests in order to protect biodiversity and ecological functions. Partial cutting with variable levels of retention would be an appropriate management strategy as it reproduces the structural complexity of old forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.