Renal ischemia-reperfusion injury results in oxidative stress-induced alterations in barrier function. Activation of the mitogen-activated protein (MAP) kinase pathway during recovery from oxidative stress may be an effector of oxidant-induced tight junction reorganization. We hypothesized that tight junction composition and barrier function would be perturbed during recovery from oxidative stress. We developed a model of short-term H 2 O 2 exposure followed by recovery using Madin Darby Canine Kidney cells (MDCK II). H 2 O 2 perturbs barrier function without a significant cytotoxic effect except in significant doses. ERK-1/2 and p38, both enzymes of the MAP kinase pathway, were activated within minutes of exposure to H 2 O 2 . Transient exposure to H 2 O 2 produced a biphasic response in transepithelial electrical resistance (TER). An initial drop in TER at 6 hours was followed by a significant increase at 24 hours. Inhibition of ERK-1/2 activation attenuated the increase in TER observed at 24 hours. Expression of occludin initially decreased followed by partial recovery at 24 hours. In contrast, claudin-1 levels decreased and failed to recover at 24 hours. Claudin-2 levels markedly decreased at 24 hours; however, inhibition of ERK-1/2 activation was protective. Occludin and claudin-1 localization at the apical membrane on immunofluorescent images was fragmented at 6 hours after H 2 O 2 exposure with subsequent recovery of appropriate localization by 24 hours. MDCK II cell recovery after H 2 O 2 exposure is associated with functional and structural modification of the tight junction that are mediated in part by activation of the MAP kinase enzymes, ERK-1/2 and p38.
All-atom molecular dynamics simulations of butyrylcholinesterase (BChE) sans inhibitor and in complex with each of fifteen dialkyl phenyl phosphate derivatives were conducted to characterize inhibitor binding modes and strengths. Each system was sampled on the 250 ns timescale in explicit ionic solvent, for a total of over 4 μs of simulation time. A K-means algorithm was used to cluster the resulting structures into distinct binding modes, which were further characterized based on atomic-level contacts between inhibitor chemical groups and active site residues. Comparison of experimentally observed inhibition constants (K I) with the resulting contact tables provides structural explanations for relative binding coefficients and highlights several notable interaction motifs. These include ubiquitous contact between glycines in the oxyanion hole and the inhibitor phosphate group; a sterically-driven binding preference for positional isomers that extend aromaticity; a stereochemical binding preference for choline-containing inhibitors, which mimic natural BChE substrates; and the mechanically-induced opening of the omega loop region to fully expose the active site gorge in the presence of choline-containing inhibitors. Taken together, these observations can greatly inform future design of BChE inhibitors, and the approach reported herein is generalizable to other enzyme-inhibitor systems and similar complexes that depend on non-covalent molecular recognition.
To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.
Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer’s and Huntington’s disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer’s disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (KI value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower KI value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.