Remote sensing instruments, both aircraft and on-orbit platforms, undergo extensive laboratory calibrations to determine their geometric, spectral, and radiometric responses. Additional in-flight radiometric calibrations can be performed using well-characterized earth targets. The Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign provided such an opportunity when the ER-2 aircraft overflew Railroad Valley on August 13 and 15, 2019. Surface reflectances were available from the August 4, 2019 field team and from the Radiometric Calibration Network (RadCalNet) portal, and spectral aerosol optical depths from an on-site AERosol RObotic NETwork (AERONET) sunphotometer. The Enhanced MODIS Airborne Simulator (eMAS), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), and the "Classic" Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-C) sensors individually performed a vicarious calibration using their respective methodologies and selection of input parameters.A comparison of the at-sensor radiances predicted from these independent analyses highlights some of the uncertainties in the inputs, including choice of solar irradiance model. Although good agreement, within 5%, is found at visible wavelengths, difference can be as large as 15% in the shortwave infrared (SWIR). This highlights the need for the remote sensing community to agree upon a standard solar model, to remove sensor-to-sensor biases derived from in-flight calibrations.
Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 10/12/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx Abstract. The Air Force Weather Agency (AFWA) has a long history of providing global cloud analyses and forecasts. Until recently, their focus has been on determining the cloud amount and cloud type. Satellite-based World-Wide Merged Cloud Analysis (WWMCA) data provided by the AFWA are analyzed to understand and assess their capability to characterize cloud single scattering parameters at optical wavelengths. WWMCA represents the most refined version of AFWA's cloud depiction and forecast system and includes up to four cloud layers and 38 cloud parameters per file at each hemispheric grid point. Findings on WWMCA's determination of cloud optical depth (COD), consistency with synoptic-scale cloud fields, and its ability to support radiative transfer calculations are as follows: (1) the WWMCA optical depth is strongly correlated with the theoretical optical depth at 550 nm computed using WWMCA's cloud microphysical parameters.(2) WWMCA captures the large-scale spatial variation of COD as represented by the Mei-yu/Baiu onset and progression of synoptic cloud fields as well as the time-dependent character of mesoscale features. (3) WWMCA does not provide single scattering albedo and the cloud phase function which are needed to solve the radiative transfer equation. Because WWMCA is based on passive sensor processing, obscured cloud layers are not accounted for in the calculation of COD, which may lead to an underestimation of total COD.
We present an overview and several important upgrades to the Vector Discrete Ordinate Radiative Transfer (VDISORT) code. VDISORT is a polarized (vector) radiative transfer code that can be applied to a wide range of research problems including the Earth’s atmosphere and ocean system. First, a solution is developed to the complex algebraic eigenvalue problem resulting when the b2 component of the Stokes scattering matrix is non-zero. This solution is needed to compute the V component of the Stokes vector I=[I∥,I⊥,U,V]T. Second, a significant improvement in computational efficiency is obtained by reducing the dimension of the algebraic eigenvalue by a factor of 2 resulting in a speed increase of about 23 = 8. Third, an important upgrade of the VDISORT code is obtained by developing and implementing a method to enable output at arbitrary polar angles by the integration of the source function (ISF) method for partially reflecting Lambertian as well as general non-Lambertian surfaces. Fourth, a pseudo-spherical treatment has been implemented to provide important corrections for Earth curvature effects at near horizontal solar zenith and observation (viewing) polar angles. Fifth, a post-processing single-scattering correction procedure has been developed to enhance the accuracy and speed for strongly forward-peaked scattering. With these significant improvements the results from the upgraded version of the VDISORT code match published benchmark results for Rayleigh scattering, Mie scattering, and scattering by non-spherical cirrus particles. The performance of VDISORT for a polarized incident beam source is equally satisfactory. The VDISORT vector radiative transfer code is made public and freely available for use by the growing polarimetric research community including the space-borne polarimeters on the future NASA PACE and AOS missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.