Cholera toxin (CT) is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2) response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine to prevent RSV infection. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses and has been shown to exhibit chemotactic activity through CX3C mimicry. Here, we show that sublingual or intranasal immunization of a purified G protein fragment of amino acids from 131 to 230, designated Gcf, induces strong serum IgG and mucosal IgA responses. Interestingly, these antibody responses could be elicited by Gcf even in the absence of any adjuvant, indicating a novel self-adjuvanting property of our vaccine candidate. Gcf exhibited potent chemotactic activity in in vitro cell migration assay and cysteine residues are necessary for chemotactic activity and self-adjuvanticity of Gcf in vivo . Mucosal immunization with Gcf also provides protection against RSV challenge without any significant lung eosinophilia or vaccine-induced weight loss. Together, our data demonstrate that mucosal administration of Gcf vaccine elicits beneficial protective immunity and represents a promising vaccine regimen preventing RSV infection.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses. Here, a recombinant replication-deficient adenovirus-based vaccine, rAd/3xG, expressing the soluble core domain of G glycoprotein (amino acids 130 to 230) engineered by codon optimization and tandem repetition for higher-level expression, was constructed and evaluated for its potential as an RSV vaccine in a murine model. A single intranasal immunization with rAd/3xG provided potent protection against RSV challenge which lasted for more than 10 weeks. Strong mucosal immunoglobulin A responses were also induced by a single intranasal immunization but not by intramuscular or oral administration of rAd/3xG. Interestingly, neither gamma interferon-nor interleukin-4-producing CD4 T cells directed to I-E d -restricted epitope were detected in the lungs of rAd/3xG-immune mice upon challenge, whereas priming with vaccinia virus expressing RSV G (vvG) elicited strong Th1/Th2 mixed CD4 T-cell responses. Lung eosinophilia and vaccine-induced weight loss were significantly lower in the rAd/3xG-immune group than in the vvG-primed group. Together, our data demonstrate that a single intranasal administration of rAd/3xG elicits beneficial protective immunity and represents a promising vaccine regimen against RSV infection.Respiratory syncytial virus (RSV) is the most important viral pathogen causing serious respiratory tract disease in infants and young children worldwide. RSV is also receiving increasing recognition as an important cause of lower respiratory tract illness in immunocompromised patients and the elderly (13,15,16). Despite the importance of RSV as a respiratory pathogen, there is no licensed vaccine currently available against RSV infection. Thus, developing an effective and safe RSV vaccine remains a worldwide priority.The RSV G glycoprotein was identified as the major RSV attachment protein (24) and is thought to be important for protection against RSV infection (39). G protein lacks any major histocompatibility complex class I-restricted epitope (8,26,36) and has not yet been demonstrated to elicit a cytotoxic T-lymphocyte response in either humans or mice (19,29). It has a single immunodominant I-E d epitope spanning amino acids 183 to 198 and largely induces a specific subset of CD4 T cells restricted to V14 expression in the T-cell receptor (40,42). Numerous studies have suggested that immunization with RSV G is associated with the induction of polarized Th2-type responses, which leads to pulmonary eosinophilia upon RSV challenge of G-immunized mice (17,20,30,35,40). In contrast, it was recently suggested that G-specific immune responses are not solely the basis for vaccine-enhanced illness and should not be excluded from potential vaccine strategies (21,22). In addition, int...
Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.