Fibroblast-like synoviocytes (FLSs) are a major cell population of the pannus that invades cartilage and bone in rheumatoid arthritis (RA). FLS resistance to apoptosis is a major characteristic of RA. The aims of this study were to investigate the effects of interleukin-17 (IL-17) and IL-17-producing T helper (Th17) cells on resistance to apoptosis in FLSs from RA patients (RA FLSs) and their roles in mitochondrial dysfunction and autophagy. Mitochondrial function was assessed in RA FLSs and FLSs from osteoarthritis patients (OA FLSs). FLSs were treated with IL-17 and their morphological features, respiratory level and mitochondrial gene expression were measured. The effects of IL-17 and Th17 cells on the relationship between autophagy and apoptosis were evaluated by measuring the expression of apoptosis-related genes using sodium nitroprusside or 3-methyladenine. The mitochondria of FLSs isolated from RA and osteoarthritis patients displayed different morphological and physiological features. RA FLSs exhibited greater autophagosome formation and greater dysfunction of mitochondrial respiration compared with OA FLSs. IL-17 induced mitochondrial dysfunction and autophagosome formation in RA FLSs, suggesting that they were resistant to apoptosis. Autophagy-related antiapoptosis induced by IL-17 was restored by inhibition of autophagy, suggesting a relationship between mitochondrial dysfunction and cell survival in RA FLSs. Th17 cells and IL-17 increased autophagy of RA FLSs by causing mitochondrial dysfunction. Our findings suggest that, in RA, interactions between RA FLSs and Th17 cells may be involved in the tumorous growth of FLSs and the formation of pannus in joints.
The functions of microRNAs (miRNAs) as either oncogenes or tumor suppressors in regulating cancer-related events have been established. We analyzed the alterations in the miRNA expression profile of the glioma cell line U-251 caused by ionizing radiation (IR) by using an miRNA array and identified several miRNAs whose expression was significantly affected by IR. Among the IR-responsive miRNAs, we further examined the function of miR-193a-3p, which exhibited the most significant growth-inhibiting effect. miR-193a-3p was observed to induce apoptosis in both U-251 and HeLa cells. We also demonstrated that miR-193a-3p induces the accumulation of intracellular reactive oxygen species (ROS) and DNA damage as determined by the level of γH2AX and by performing the comet assay. The induction of both apoptosis and DNA damage by miR-193a-3p was blocked by antioxidant treatment, indicating the crucial role of ROS in the action of miR-193a-3p. Among the putative target proteins, the expression of Mcl-1, an anti-apoptotic Bcl-2 family member, decreased because of miR-193a-3p transfection. A reporter assay using a luciferase construct containing the 3'-untranslated region of Mcl-1 confirmed that Mcl-1 is a direct target of miR-193a-3p. Down-regulation of Mcl-1 by siRNA transfection closely mimicked the outcome of miR-193a-3p transfection showing increased ROS, DNA damage, cytochrome c release, and apoptosis. Ectopic expression of Mcl-1 suppressed the pro-apoptotic action of miR-193a-3p, suggesting that Mcl-1 depletion is critical for miR-193a-3p induced apoptosis. Collectively, our results suggest a novel function for miR-193a-3p and its potential application in cancer therapy.
The study presented was conducted to analyze the effects of obsessive-compulsive symptoms on patients' quality of life and the costs incurred by patients and society for the treatment of obsessive-compulsive disorder (OCD). To accomplish this, a detailed 410-item questionnaire of psychosocial function and economic cost was sent to every fourth member of the Obsessive Compulsive Foundation. Of the 2,670 members who received the survey, 701 (26.9%) returned it.Outcome measures included symptomatology, course of illness, impact of illness on psychosocial and other functioning, effects of diagnosis and treatment, and economic consequences. The demographics of this group were similar to those in smaller treatment-seeking clinical samples, but not necessarily to OCD sufferers within the US population as a whole. More than half of the patients reported moderate to severe interference in family relationships, socializing, and ability to study or work, secondary to OCD symptoms. A 10.2-year gap was observed between the onset of symptoms and the first attempt to seek professional help, and a 17.2-year gap was observed between the onset of symptoms and receipt of effective treatment. Specific treatments, such as serotonin reuptake inhibitors and behavior therapy, showed greater symptom improvement, and significantly reduced the total annual fees incurred by OCD patients when compared with nonspecific treatments.Our study results indicate that OCD has a profound effect on psychosocial functioning and quality of life. Large direct costs for OCD and even larger indirect costs due to lost wages and underemployment were found. Greater awareness of OCD among practitioners may result in earlier diagnosis and more appropriate and cost-effective treatments.
Clomipramine is more effective than desipramine in the treatment of body dysmorphic disorder and is effective even among those patients who are delusional.
Dysfunction of T helper 17 (Th17) cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3) orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL)-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1) and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.