Metformin is widely used to suppress certain functions of the cells found in diseases including diabetes and obesity. In this study, the effects of metformin on downregulating IL-17-producing T (Th17) cells, activating and upregulating regulatory T (Treg) cells, suppressing osteoclastogenesis, and clinically scoring collagen-induced arthritis (CIA) were investigated. To evaluate the effect of metformin on CIA, mice were orally fed with either metformin or saline as control three times a week for nine weeks. Histological analysis of the joints was performed using immunohistochemistry and Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. Metformin mitigated the severity of CIA, reduced serum immunoglobulin concentrations, and reciprocally regulated Th17/Treg axis. Also, metformin treatment of normal cells cultured in Th17 conditions decreased the number of Th17 cells and increased the number of Treg cells. Metformin decreased gene expression and osteoclastogenic activity in CIA and normal mice. These results indicate that metformin had immunomodulatory actions influencing anti-inflammatory action on CIA through the inhibition of Th17 cell differentiation and the upregulation of Treg cell differentiation along with the suppression of osteoclast differentiation. Our results suggest that metformin may be a potential therapeutic for rheumatoid arthritis.
ObjectiveMetformin is used to treat type 2 diabetes. We sought to determine whether metformin reduces inflammation, by regulating p-signal transducer and activator of transcription 3 (STAT3) expression and T-helper 17 (Th17) cell proliferation, in a mouse model of inflammatory bowel disease (IBD).MethodsIBD mice were administered metformin for 16 days and their tissues were analyzed. AMP-activated protein kinase (AMPK), the mammalian target of rapamycin (mTOR), p-STAT3 and p-STAT5 in the spleen and lymph nodes were detected using immunohistochemistry and confocal microscopy. Gene expression was determined using quantitative PCR assays, and protein expression levels were measured using western blotting and enzyme-linked immunosorbent assays. Human HT-29 cell proliferation was evaluated using MTT assays.ResultsMetformin reduced disease activity index scores and inhibited weight loss. Metformin also decreased the colonic histological score and inflammatory mediators and increased colon lengths increased. Treatment with metformin inhibited the expression of interleukin (IL)-17, p-STAT3, and p-mTOR. In contrast, metformin treatment increased expression levels of p-AMPK and Foxp3. In addition, expression of inflammatory cytokines decreased in a dose-dependent manner in inflamed human HT-29 cells cultured with metformin at various concentrations.ConclusionsMetformin attenuates IBD severity and reduces inflammation through the inhibition of p-STAT3 and IL-17 expression. Our results have increased our understanding of this chronic inflammatory disease, and support the strategy of using p-STAT3 inhibitors to treat IBD.
Circulating autoantibodies and immune complex deposition are pathological hallmarks of systemic lupus erythematosus (SLE). B cell differentiation into plasma cells (PCs) and some T cell subsets that function as B cell helpers can be therapeutic targets of SLE. Mechanistic target of rapamycin (mTOR) signaling is implicated in the formation of B cells and germinal centers (GCs). We assessed the effect of metformin, which inhibits mTOR, on the development of autoimmunity using Roquinsan/san mice. Oral administration of metformin inhibited the formation of splenic follicles and inflammation in kidney and liver tissues. It also decreased serum levels of anti-dsDNA Abs without affecting serum glucose levels. Moreover, metformin inhibited CD21highCD23low marginal zone B cells, B220+GL7+ GC B cells, B220−CD138+ PCs, and GC formation. A significant reduction in ICOS+ follicular helper T cells was found in the spleens of the metformin-treated group compared with the vehicle-treated group. In addition, metformin inhibited Th17 cells and induced regulatory T cells. These alterations in B and T cell subsets by metformin were associated with enhanced AMPK expression and inhibition of mTOR–STAT3 signaling. Furthermore, metformin induced p53 and NF erythroid-2–related factor-2 activity in splenic CD4+ T cells. Taken together, metformin-induced alterations in AMPK–mTOR–STAT3 signaling may have therapeutic value in SLE by inhibiting B cell differentiation into PCs and GCs.
Objective. Bone destruction is a critical pathology involved in the functional disability caused by rheumatoid arthritis (RA). Osteoclasts, which are specialized bone-resorbing cells regulated by cytokines such as RANKL, are implicated in bone destruction in RA. The aim of this study was to determine whether interleukin-21 (IL-21), a potent immunomodulatory 4-␣-helical bundle type 1 cytokine, has osteoclastogenic activity in patients with RA and in mice with collageninduced arthritis (CIA).Methods. The expression of IL-21 in synovial tissue was examined using immunohistochemistry. The concentrations of IL-21 in serum and synovial fluid were determined by enzyme-linked immunosorbent assay.
IntroductionThe study was undertaken to investigate the interrelation of toll-like receptor (TLR) and interleukin (IL)-17 in the salivary glands of patients with primary Sjogren's syndrome (pSS) and to determine the role of TLR and IL-17 in the pathophysiology of pSS.MethodsThe expressions of various TLRs, IL-17 and the cytokines involved in Th17 cell differentiation including IL-6, IL-23, tumor necrosis factor-alpha (TNF-α) and IL-1β were examined by immunohistochemistry in salivary glands of pSS patients. The IL-17 producing CD4+ T cells (Th17 cells) were examined by flow cytometry and confocal staining in peripheral mononuclear blood cells (PMBCs) and salivary glands of pSS patients. After PBMCs were treated with TLR specific ligands, the induction of IL-17 and IL-23 was determined using real-time PCR and ELISA. The signaling pathway that mediates the TLR2 stimulated production of IL-17 and IL-23 was investigated by using treatment with specific signaling inhibitors.ResultsWe showed that TLR2, TLR4, TLR6, IL-17 and the cytokines associated with Th17 cells were highly expressed in salivary glands of pSS patients but not in controls. The expressions of TLR2, TLR4 and TLR6 were observed in the infiltrating mononuclear cells and ductal epithelial cells, whereas IL-17 was mainly observed in infiltrating CD4+ T cells. The number of IL-17 producing CD4+ T cells was significantly higher in pSS patients both in PBMCs and minor salivary glands. The stimulation of TLR2, TLR4 and TLR6 additively induced the production of IL-17 and IL-23 from the PBMCs of pSS patients especially in the presence of TLR2 stimulation. IL-6, signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappaB (NF-kB) pathways were implicated in the TLR2 stimulated IL-17 and IL-23.ConclusionsOur data demonstrate that TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in pSS. Therefore, therapeutic strategies that target TLR/IL-17 pathway might be strong candidates for treatment modalities of pSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.