Most small noncoding RNAs (sRNAs) are known to base pair with target mRNAs and regulate mRNA stability or translation to trigger various changes in the cell metabolism of Escherichia coli. The SdsR sRNA is expressed specifically during the stationary phase and represses tolC and mutS expression. However, it was not previously known whether the growth-phase-dependent regulation of SdsR is important for cell growth. Here, we ectopically expressed SdsR during the exponential phase and examined cell growth and survival. We found that ectopic expression of SdsR led to a significant and Hfq-dependent cell death with accompanying cell filamentation. This SdsR-driven cell death was alleviated by overexpression of RyeA, an sRNA transcribed on the opposite DNA strand, suggesting that SdsR/RyeA is a novel type of toxin-antitoxin (T/A) system in which both the toxin and the antitoxin are sRNAs. We defined the minimal region required for the SdsR-driven cell death. We also performed RNA-seq analysis and identified 209 genes whose expression levels were altered by more than twofold following pulse expression of ectopic SdsR at exponential phase. Finally, we found that that the observed SdsR-driven cell death was mainly caused by the SdsR-mediated repression of yhcB, which encodes an inner membrane protein.
In
Escherichia coli
, SdsR and RyeA, a unique pair of mutually
cis
-encoded small RNAs (sRNAs), act as toxin and antitoxin, respectively. SdsR and RyeA expression are reciprocally regulated; however, how each regulates the synthesis of the other remains unclear. Here, we characterized the biosynthesis of the two sRNAs during growth and investigated their coordinate regulation using
sdsR
and
ryeA
promoter mutant strains. We found that RyeA transcription occurred even upon entry of cells into the stationary phase, but its apparent expression was restricted to exponentially growing cells because of its degradation by SdsR. Likewise, the appearance of SdsR was delayed owing to its RyeA-mediated degradation. We also found that the
sdsR
promoter was primarily responsible for transcription of the downstream
pphA
gene encoding a phosphatase and that
pphA
mRNA was synthesized by transcriptional read-through over the
sdsR
terminator. Transcription from the σ
70
-dependent
ryeA
promoter inhibited transcription from the σ
S
-dependent
sdsR
promoter through transcriptional interference. This transcriptional inhibition also downregulated
pphA
expression, but RyeA itself did not downregulate
pphA
expression.
Knockdown or silencing of a specific gene presents a powerful strategy for elucidating gene function in a variety of organisms. To date, efficient silencing methods have been established in eukaryotes, but not bacteria. In this chapter, an efficient and versatile gene silencing method using artificial small RNA (afsRNA) is described. For this purpose, target-recognizing sequences were introduced in specially designed RNA scaffolds to exist as single-stranded stretches in afsRNA. The translation initiation region of target genes was used as the sequence for afsRNA recognition, based on the theory that this site is usually highly accessible to ribosomes, and therefore, possibly, afsRNA. Two genes transcribed as monocistrons were tested with our protocol. Both genes were effectively silenced by their cognate afsRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.