ObjectiveTo investigate the effect of polygenic load on the progression of striatal dopaminergic dysfunction in patients with Parkinson disease (PD).MethodsUsing data from 335 patients with PD in the Parkinson's Progression Markers Initiative (PPMI) database, we investigated the longitudinal association of PD-associated polygenic load with changes in striatal dopaminergic activity as measured by 123I-N-3-fluoropropyl-2-β-carboxymethoxy-3β-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT over 4 years. PD-associated polygenic load was estimated by calculating weighted genetic risk scores (GRS) using 1) all available 27 PD-risk single nucleotide polymorphisms (SNPs) in the PPMI database (GRS1) and 2) 23 SNPs with minor allele frequency >0.05 (GRS2).ResultsGRS1 and GRS2 were correlated with younger age at onset in patients with PD (GRS1, Spearman ρ = −0.128, p = 0.019; GRS2, Spearman ρ = −0.109, p = 0.047). Although GRS1 did not show an association with changes in striatal 123I-FP-CIT availability, GRS2 was associated with a slower decline of striatal dopaminergic activity (interactions with disease duration in linear mixed model; caudate nucleus, estimate = 0.399, SE = 0.165, p = 0.028; putamen, estimate = 0.396, SE = 0.137, p = 0.016).ConclusionsOur results suggest that genetic factors for PD risk may have heterogeneous effects on striatal dopaminergic degeneration, and some factors may be associated with a slower decline of dopaminergic activity. Composition of PD progression–specific GRS may be useful in predicting disease progression in patients.
BackgroundStudies regarding differentially expressed genes (DEGs) in Parkinson’s disease (PD) have focused on common upstream regulators or dysregulated pathways or ontologies; however, the relationships between DEGs and disease-related or cell type-enriched genes have not been systematically studied. Meta-analysis of DEGs (meta-DEGs) are expected to overcome the limitations, such as replication failure and small sample size of previous studies.PurposeMeta-DEGs were performed to investigate dysregulated genes enriched with neurodegenerative disorder causative or risk genes in a phenotype-specific manner.MethodsSix microarray datasets from PD patients and controls, for which substantia nigra sample transcriptome data were available, were downloaded from the NINDS data repository. Meta-DEGs were performed using two methods, combining p-values and combing effect size, and common DEGs were used for secondary analyses. Gene sets of cell type-enriched or disease-related genes for PD, Alzheimer’s disease (AD), and hereditary progressive ataxia were constructed by curation of public databases and/or published literatures.ResultsOur meta-analyses revealed 449 downregulated and 137 upregulated genes. Overrepresentation analyses with cell type-enriched genes were significant in neuron-enriched genes but not in astrocyte- or microglia-enriched genes. Meta-DEGs were significantly enriched in causative genes for hereditary disorders accompanying parkinsonism but not in genes associated with AD or hereditary progressive ataxia. Enrichment of PD-related genes was highly significant in downregulated DEGs but insignificant in upregulated genes.ConclusionDownregulated meta-DEGs were associated with PD-related genes, but not with other neurodegenerative disorder genes. These results highlight disease phenotype-specific changes in dysregulated genes in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.