Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.
Multiphoton fluorescence lifetime imaging microscopy (MPM-FLIM) is extensively proposed as a non-invasive optical method to study tissue metabolism. The approach is based on recording changes in the fluorescence lifetime attributed to metabolic co-enzymes, of which nicotinamide adenine dinucleotide (NADH) is of major importance. However, intrinsic tissue fluorescence is complex. Particularly when utilizing two-photon excitation, as conventionally employed in MPM. This increases the possibility for spectral crosstalk and incorrect assignment of the origin of the FLIM signal. Here we demonstrate that in keratinocytes, proteins such as keratin may interfere with the signal usually assigned to NADH in MPM-FLIM by contributing to the lifetime component at 1.5 ns. This is supported by a change in fluorescence lifetime distribution in KRT5- and KRT14-silenced cells. Altogether, our results suggest that the MPM-FLIM data originating from cellular autofluorescence is far more complex than previously suggested and that the contribution from other tissue constituents should not be neglected—changing the paradigm for data interpretation in this context.
Significance: Sentinel lymph node (SLN) biopsy is an important method for metastasis staging in, e.g., patients with malignant melanoma. Tools enabling prompt histopathological analysis are expected to facilitate diagnostics; optical technologies are explored for this purpose. Aim: The objective of this exploratory study was to investigate the potential of adopting multiphoton laser scanning microscopy (MPM) together with fluorescence lifetime analysis (FLIM) for the examination of lymph node (LN) tissue ex vivo. Approach: Five LN tissue samples (three metastasis positive and two negative) were acquired from a biobank comprising tissues from melanoma patients. Tissues were deparaffinized and subjected to MPM-FLIM using an experimental MPM setup equipped with a time correlated single photon counting module enabling FLIM. Results: The data confirm that morphological features similar to conventional histology were observed. In addition, FLIM analysis revealed elevated morphological contrast, particularly for discriminating between metastatic cells, lymphocytes, and erythrocytes. Conclusions: Taken together, the results from this investigation show promise for adopting MPM-FLIM in the context of SLN diagnostics and encourage further translational studies on fresh tissue samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.