The present work describes a control methodology for a hybrid energy storage system (HESS) to improve its transient performance under dynamic load conditions. The proposed coordination control enhanced life cycle performance by segregating the power between battery energy storage systems (BESS) and a supercapacitor (SC). The BESS and SC are connected parallel to each other, and two individual DC–DC bidirectional converters connect them to a common DC bus. The coordination control is established between the controllers of BESS and the SC of HESS, which helps to utilise the usable energy capacity of the HESS. The charging/discharging current of the BESS is controlled within the allowable safety range based on the slope and magnitude of the BESS current. The high-frequency power component is handled by the SC, which helps to reduce the extra exhaustion on the BESS during operation with a higher current. The proposed coordination control of HESS is validated through simulation and the results show the effectiveness of the proposed controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.