Zinc is a trace element nutrient that is essential for life. This mineral serves as a cofactor for enzymes that are involved in critical biochemical processes and it plays many structural roles as well. At the cellular level, zinc is tightly regulated and disruption of zinc homeostasis results in serious physiological or pathological issues. Despite the high demand for zinc in cells, free or labile zinc must be kept at very low levels. In humans, two major zinc transporter families, the SLC30 (ZnT) family and SLC39 (ZIP) family control cellular zinc homeostasis. This review will focus on the SLC39 transporters. SLC39 transporters primarily serve to pass zinc into the cytoplasm, and play critical roles in maintaining cellular zinc homeostasis. These proteins are also significant at the organismal level, and studies are revealing their link to human diseases. Therefore, we will discuss the function, structure, physiology, and pathology of SLC39 transporters.
Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than wild-type chloroplasts. This decreased iron content is presumably responsible for the observed defects in photosynthetic electron transport. When germinated in alkaline soil, fro7 seedlings show severe chlorosis and die without setting seed unless watered with high levels of soluble iron. Overall, our results provide molecular evidence that FRO7 plays a role in chloroplast iron acquisition and is required for efficient photosynthesis in young seedlings and for survival under iron-limiting conditions. metal homostasis ͉ FRO ͉ Arabidopsis ͉ alkaline soil ͉ photosynthesis
Significance
Intracellular zinc is tightly controlled because zinc is essential but potentially toxic. Many organisms regulate zinc using storage vesicles/organelles, but whether mammals do so is unknown. Here, we show that human ZIP13 releases zinc from vesicular stores. Previous studies found that mutations in the ZIP13 gene,
SLC39A13
, cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS) and speculated that ZIP13 exports zinc from the early secretory pathway and that zinc overload in the endoplasmic reticulum causes SCD-EDS. In contrast, our study suggests that SCD-EDS results from zinc deficiency in the endoplasmic reticulum resulting from zinc trapping in vesicular stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.