Background:Comorbidity of depression, heart disease, and migraine has been observed in clinical practice, while ambient air pollution has been identified among different risk factors for these health conditions. Suicide attempts and ideations as the result of depression may be linked to air pollution exposure. Therefore the effects of ambient air pollution on emergency department (ED) visits for suicide attempts were investigated.Methods:Emergency visit data were collected in a hospital in Vancouver, Canada. The generalized linear mixed models technique was applied in the analysis of these data. A natural hierarchical structure of the data was used to define the clusters, with days nested in a 3-level structure (day of week, month, year). Poisson models were fitted to the clustered counts of ED visits with a single air pollutant, temperature and relative humidity. In addition, the case-crossover methodology was used with the same data for comparison. The analysis was performed by gender (all, males, females) and month (all: January–December, warm: April–September, cold: October–March).Results:Both hierarchical and case-crossover methods confirmed positive and statistically significant associations among carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and particulate matter (PM10) for all suicide attempts in the cold period. The largest increase was observed for males in the cold period for a 1-day lagged exposure to NO2, with an excess risk of 23.9% (95% CI: 7.8, 42.4) and odds ratio of 1.21 (95% CI: 1.03, 1.41). In warm months the associations were not statistically significant, and the highest positive value was obtained for ozone lagged by 1 day.Conclusion:The results indicate a potential association between air pollution and emergency department visits for suicide attempts.
A large landfill fire occurred in Iqaluit, Canada in spring/summer 2014. Air quality data were collected to characterize emissions as well as potential threats to public health. Criteria pollutants were monitored (PM2.5, O3, NO2) along with dioxins/furans, polycyclic aromatic hydrocarbons, and volatile organic compounds. Median daily dioxin/furan concentrations were 66-times higher during active burning (0.2 pg/m(3) Toxic Equivalency Quotient (TEQ)) compared to after the fire was extinguished (0.003 pg/m(3) TEQ). Other pollutants changed less dramatically. Our findings suggest that airborne concentrations of potentially harmful substances may be elevated during landfill fires even when criteria air pollutants remain largely unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.