Laser-induced damage on optical surfaces is often associated with absorbing contaminants introduced by the polishing process. This is particularly the case for W optics. In the present study, secondmy ion mass spectroscopy (SIMS) was used to measure depth profiles of finishing-process contamination on fused silica surfaces. Contaminants detected include the major polishing compound components (Ce or Zr from CeOz or Z@z), Al present hugely because of the use of AlzO~in the final cleaning process, and other metals (Fe, Cu, Cr) incorporated during the polishing step or earlier grinding steps. Depth profile data typically showed an exponential decay of contaminant concentration to a depth of 100-200 nm. This depth is consistent with a polishing redeposition layers formed during the chemo-mechanical polishing of fused silica. Peak contaminant levels are typically in the 10-100 ppm range, except for Al which often exceeds 1000 ppm.A strong correlation has been shown between the presenee of a "gray haze" damage morphology and the use of Ce02 polishing compound. It has not been proven, however, that linear absorption by CeOz, or any other contaminant, is the relevant damage mechanism. Simple thermomechanical calculations show that for the contaminant levels present, temperatures high enough to cause damage m only likely if the contaminant was present as particles with diameters of 10-30 nm. We are not able to prove or disprove the presenee of such particles. No strong correlation between high levels of Ce, or any other contaminant, ad low damage threshold is observed. In fact one of the strongest indications of a correlation is between increased damage thresholds and inaeasd Zr contamination. This suggests that the connection between redeposition layer contamination and laser damage threshold is not simply an absorbing contaminant issue.
We report a summary ofthe surface damage, growth mitigation effort at 3w for fused silica optics at LLNL. The objective was to experimentally validate selected methods that could be applied to pre-initiated or retrieved-fromservice optics, to stop further damage growth. A specific goal was to obtain sufficient data and information on successful methods for fused silica optics to select a single approach for processing NIF optics.This paper includes the test results and the evaluation thereof, for several mitigation methods for fused silica. The mitigation methods tested in this study are wet chemical etching, cold plasma etching, CO2 laser processing, and micro-flame torch processing. We found that CO2 laser processing produces the most significant and consistent results to halt laser-induced surface damage growth on fused silica. We recorded successful mitigation of the growth of laser-induced surface damage sites as large as 0.5mm diameter, for 1000 shots at fluences in the range of 8 to 1 3J/cm2. We obtained sufficient data for elimination of damage growth using CO2 laser processing on subaperture representative optics, to proceed with application to full-scale NIF optics.
Results on reactive atom plasma etching performed on ULE® (Corning Ultra Low Expansion) glass samples at atmospheric pressure are presented for the first time. A reactive atomic plasma technology (RAPT®), has been developed by RAPT Industries and employed for the finishing of optical surfaces. An atmospheric pressure argon inductively coupled plasma (ICP) excites a reactive gas injected through its centre. The plume of hot neutral excited species reacts at the substrate yielding controlled and repeatable trenches. In the case of ULE a material removal (up to 0.55 mm3/s) is obtained without pre‐heating the samples. Among the factors influencing the results, an increase in gas concentration at the same power does not change the sample temperature, indicating that thermo‐chemical effects do not influence the removal rates. Due to the plasma constructive constrains, increasing the gas concentration is more practical and of wider effect than increasing the power. The benefits of the process are illustrated and the extension of the technology to large optical surfaces discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.