It was reported recently that human fibroblasts can be reprogrammed into a pluripotent state that resembles that of human embryonic stem (hES) cells. This was achieved by ectopic expression of four genes followed by culture on mouse embryonic fibroblast (MEF) feeders under a condition favoring hES cell growth. However, the efficiency of generating human induced pluripotent stem (iPS) cells is low, especially for postnatal human fibroblasts. We started supplementing with an additional gene or bioactive molecules to increase the efficiency of generating iPS cells from human adult as well as fetal fibroblasts. We report here that adding SV40 large T antigen (T) to either set of the four reprogramming genes previously used enhanced the efficiency by 23-70-fold from both human adult and fetal fibroblasts. Discernible hES-like colonies also emerged 1-2 weeks earlier if T was added. With the improved efficiency, we succeeded in replacing MEFs with immortalized human feeder cells that we previously established for optimal hES cell growth. We further characterized individually picked hES-like colonies after expansion (up to 24 passages). The majority of them expressed various undifferentiated hES markers. Some but not all the hESlike clones can be induced to differentiate into the derivatives of the three embryonic germ layers in both teratoma formation and embryoid body (EB) formation assays. These pluripotent clones also differentiated into trophoblasts after EB formation or bone morphogenetic protein 4 induction as classic hES cells. Using this improved approach, we also generated hES-like cells from homozygous fibroblasts containing the sickle cell anemia mutation Hemoglobin Sickle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.