Objective To understand radiotherapy-induced dental lesions characterized by enamel loss or delamination near the dentin-enamel junction (DEJ), this study evaluated enamel and dentin nano-mechanical properties and chemical composition before and after simulated oral cancer radiotherapy. Design Sections from seven non-carious third molars were exposed to 2 Gy fractions, 5 days/week for 7 weeks for a total of 70 Gy. Nanoindentation was used to evaluate Young’s modulus, while Raman microspectroscopy was used to measure protein/mineral ratios, carbonate/phosphate ratios, and phosphate peak width. All measures were completed prior to and following radiation at the same four buccal and lingual sites 500 and 30 microns from the DEJ in enamel and dentin (E-500, E-30, D-30 and D-500). Results The elastic modulus of enamel and dentin was significantly increased (P≤0.05) following radiation. Based on Raman spectroscopic analysis, there was a significant decrease in the protein to mineral ratio (2931/430 cm-1) following radiation at all sites tested except at D-500, while the carbonate to phosphate ratio (1070/960 cm-1) increased at E-30 and decreased at D-500. Finally, phosphate peak width as measured by FWHM at 960 cm-1 significantly decreased at both D-30 and D-500 following radiation. Conclusions Simulated radiotherapy produced an increase in the stiffness of enamel and dentin near the DEJ. Increased stiffness is speculated to be the result of the radiation-induced decrease in the protein content, with the percent reduction much greater in the enamel sites. Such changes in mechanical properties and chemical composition could potentially contribute to DEJ biomechanical failure leading to enamel delamination that occurs post-radiotherapy. However, other analyses are required for a better understanding of radiotherapy-induced effects on tooth structure to improve preventive and restorative treatments for oral cancer patients.
Mineral crystal nucleation in UMR 106-01 osteoblastic cultures occurs within 15-25-m extracellular vesicle-containing biomineralization foci (BMF) structures. We show here that BAG-75 and BSP, biomarkers for these foci, are specifically enriched in laser capture microscope-isolated mineralized BMF as compared with the total cell layer. Unexpectedly, fragments of each protein (45-50 kDa in apparent size) were also enriched within captured BMF. When a series of inhibitors against different protease classes were screened, serine protease inhibitor 4-(2-aminoethyl)benzenesulfonylfluoride HCl (AEBSF) was the only one that completely blocked mineral nucleation within BMF in UMR cultures. AEBSF appeared to act on an osteoblastderived protease at a late differentiation stage in this culture model just prior to mineral deposition. Similarly, mineralization of bone nodules in primary mouse calvarial osteoblastic cultures was completely blocked by AEBSF. Cleavage of BAG-75 and BSP was also inhibited at the minimum dosage of AEBSF sufficient to completely block mineralization of BMF. Two-dimensional SDS-PAGE comparisons of AEBSF-treated and untreated UMR cultures showed that fragmentation/activation of a limited number of other mineralization-related proteins was also blocked. Taken together, our results indicate for the first time that cleavage of BAG-75 and BSP by an AEBSF-sensitive, osteoblast-derived serine protease is associated with mineral crystal nucleation in BMF and suggest that such proteolytic events are a permissive step for mineralization to proceed.Bone is a vascularized tissue that uniquely becomes mineralized as part of its developmental program (1). Mineralized bone serves essential vertebrate functions, including structural support, reversible storage for calcium and phosphorus, and as a reservoir for toxic metals and carbonate (2). Bone tissue is composed of osteoid; osteoblasts, which produce and mineralize new bone; osteoclasts, which resorb bone; and osteocytes, mature osteoblasts that maintain bone viability (1-3). Osteoid is a type I collagen-rich extracellular matrix enriched in acidic noncollagenous proteins (4). Using fetal rat calvaria cell cultures, Bellows et al. (5) showed that osteoid is unmineralized when initially deposited, and mineral crystals form within nodular structures over the following 48 -72 h. Bone matrices can be classified as lamellar, based on a highly organized layered structure, or woven bone. Woven bone is formed during embryonic development, fracture healing, and at sites receiving mechanical stimulation in excess of 3,000 microstrain (6); lamellar bone replaces woven bone later in development.The question of whether bone mineralization is under direct osteoblastic control or whether it is purely a passive chemical process is under active investigation. Schinke et al. (7) have proposed that calcification reactions in vivo are passive physiochemical processes occurring readily where local mineralization inhibitors are overwhelmed. In support of this hypothesis, Murshed et ...
Bone acidic glycoprotein-75 is expressed very early during in vivo models of intramembranous bone formation, highly enriched in condensing osteogenic mesenchyme after marrow ablation and the osteoprogenitor layer of tibial periosteum. Bone sialoprotein accumulates within bone acidic glycoprotein-75-enriched matrix areas at a later stage in both models. Decalcification of initial sites of mineralization consistently revealed focal immunostaining for bone acidic glycoprotein-75 underneath these sites suggesting that mineralization occurs within bone acidic glycoprotein-75-enriched matrix areas. Ultrastructural immunolocalization of bone acidic glycoprotein-75 does not support a direct association with banded collagen fibrils, but rather suggests it is a component of a separate, amorphous scaffold occupying interfibrillar spaces. Double immunogold labeling demonstrated that a sizeable proportion of bone sialoprotein particles were located within a 50-nm radius of bone acidic glycoprotein-75. These results define bone acidic glycoprotein-75 as the earliest bone-restricted, extracellular marker of osteogenic mesenchyme. Based on this early bone-restricted expression pattern and a previously documented propensity of bone acidic glycoprotein-75 to form supramolecular complexes through self-association, bone acidic glycoprotein-75 may serve a key structural role in setting boundary limits of condensing osteogenic mesenchyme.
Mineralization in UMR 106-01 osteoblastic cultures occurs within extracellular biomineralization foci (BMF) within 12 h after addition of -glycerol phosphate to cells at 64 h after plating. BMF are identified by their enrichment with an 85-kDa glycoprotein reactive with Maackia amurensis lectin. Laser Raman microspectroscopic scans were made on individual BMF at times preceding (64 -76 h) and following the appearance of mineral crystals (76 -88 h). The range of variation between spectra for different BMF in the same culture was rather small. In contrast, significant differences were observed for spectral bands at 957-960, 1004, and 1660 cm ؊1 when normalized BMF spectra at different times were compared. Protein-dependent spectral bands at 1004 and 1660 cm ؊1 increased and then decreased preceding the detection of hydroxyapatite crystals via the phosphate stretching peak at 959 -960 cm ؊1. When sodium phosphate was substituted for -glycerol phosphate, mineralization occurred 3-6 h earlier. Irrespective of phosphate source, the Raman full peak width at half-maximum ratio for 88 h cultures was similar to that for 10-day-old marrow ablation primary bone. However, if mineralization was blocked with serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, 64 -88-h BMF spectra remained largely invariant. In summary, Raman spectral data demonstrate for the first time that formation of hydroxyapatite crystals within individual BMF is a multistep process. Second, changes in protein-derived signals at 1004 and 1660 cm ؊1 reflect events within BMFs that precede or accompany mineral crystal production because they are blocked by mineralization inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride. Finally, the low extent of spectral variabilitydetectedamongdifferentBMFatthesametimepointindicatesthat mineralization of individual BMF within a culture is synchronized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.