We study four operations defined on pairs of tableaux. Algorithms for the first three involve the familiar procedures of jeu de taquin, row insertion, and column insertion. The fourth operation, hopscotch, is new, although specialised versions have appeared previously. Like the other three operations, this new operation may be computed with a set of local rules in a growth diagram, and it preserves the Knuth equivalence class. Each of these four operations gives rise to an a priori distinct theory of dual equivalence. We show that these four theories coincide. The four operations are linked via the involutive tableau operations of complementation and conjugation.
Academic Press
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.