The mathematical modeling of journal bearings has advanced significantly since the Reynolds equation was first proposed. Advances in the processing capacity of computers and numerical techniques led to multi-physical models that are able to describe the behavior of hydrodynamic bearings. However, many researchers prefer to apply simple models of these components in rotor-bearing analyses due to the computational effort that complex models require. Surrogate modeling techniques are statistical procedures that can be applied to represent complex models. In the present work, Kriging models are formulated to substitute the thermohydrodynamic (THD) models of three different bearings found in a Francis hydropower unit, namely a cylindrical journal (CJ) bearing, a tilting-pad journal bearing (TPJ) bearing, and a tilting-pad thrust (TPT) bearing. The results determined by using the proposed approach reveal that Kriging models can be satisfactorily used as surrogate THD-models of hydrodynamic bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.