Astrocytes are highly complex glial cells with numerous fine cellular processes which infiltrate the neuropil to interact with synapses. The mechanisms controlling the establishment of astrocytes’ remarkable morphology and how impairing astrocytic infiltration of the neuropil alters synaptic connectivity are largely unknown. Here we find that cortical astrocyte morphogenesis depends on direct contact with neuronal processes and occurs in tune with the growth and activity of synaptic circuits. Neuroligin (NL) family cell adhesion proteins, NL1, NL2, and NL3, which are expressed by cortical astrocytes, control astrocyte morphogenesis through interactions with neuronal neurexins. Furthermore, in the absence of astrocytic NL2, cortical excitatory synapse formation and function is diminished, whereas inhibitory synaptic function is enhanced. Our findings highlight a novel mechanism of action for NLs and link astrocyte morphogenesis to synaptogenesis. Because NL mutations are implicated in various neurological disorders, these findings also offer an astrocyte-based mechanism of neural pathology.
SUMMARY Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1α and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1α and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.