The interfacial reactions of solder joints between the Sn-4Ag-0.5Cu solder ball and the Sn-7Zn-Al (30 ppm) presoldered paste were investigated in a wafer level chip scale package (WLCSP). After appropriate surface mount technology (SMT) reflow process on the printed circuit board (PCB) with organic solderability preservative (Cu/OSP) and Cu/Ni/Au surface finish, samples were subjected to 150°C high-temperature storage (HTS), 1,000 h aging. Sequentially, the cross-sectional analysis is scrutinized using a scanning electron microscope (SEM)/energy-dispersive spectrometer (EDS) and energy probe microanalysis (EPMA) to observe the metallurgical evolution in the interface and solder buck itself. It was found that Zn-enriched intermetallic compounds (IMCs) without Sn were formed and migrated from the presolder paste region into the solder after reflow and 150°C HTS test.
SnAgCu solder used in laminate package like PBGA and CSP BGA to replace eutectic SnPb as interconnection has become major trend in the electronic industry. But unlike well-known failure mode of wire bonding package, flip chip package with SnAgCu inner solder bump and external solder ball as electrical interconnection present a extremely different failure mode with wire-bonding package from a point of view in material and process. In this study, one 16mm×16mm 3000 I/O SnAgCu wafer bumping using screen-printing process was explored including the effects of reflow times, high temperature storage life (HTSL) and temperature cycle test (TCT) on bump shear strength. Furthermore, the qualified wafer bumping is assembled by flip chip assembly with various underfill material and specific organic build-up substrate, then is subject to MSL4/260°C precondition and temperature cycle test to observe the underfill effect on SnAgCu bump protection and solder joint life. Various failure modes in the flip chip package like solder bump, underfill and UBM and so on, will be scrutinized with SEM. And finally, best material combination will be addressed to make the lead free flip package successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.