Rinderpest is only the second infectious disease to have been globally eradicated. In the final stages of eradication, the virus was entrenched in pastoral areas of the Greater Horn of Africa, a region with weak governance, poor security, and little infrastructure that presented profound challenges to conventional control methods. Although the eradication process was a development activity rather than scientific research, its success owed much to several seminal research efforts in vaccine development and epidemiology and showed what scientific decision-making and management could accomplish with limited resources. The keys to success were the development of a thermostable vaccine and the application of participatory epidemiological techniques that allowed veterinary personnel to interact at a grassroots level with cattle herders to more effectively target control measures.
Abstract. To capture lessons from the 2007 Rift Valley fever (RVF) outbreak, epidemiological studies were carried out in Kenya and Tanzania. Somali pastoralists proved to be adept at recognizing symptoms of RVF and risk factors such as heavy rainfall and mosquito swarms. Sandik, which means "bloody nose," was used by Somalis to denote disease consistent with RVF. Somalis reported that sandik was previously seen in 1997/98, the period of the last RVF epidemic. Pastoralists communicated valuable epidemiological information for surveillance and early warning systems that was observed before international warnings. The results indicate that an all or none approach to decision making contributed to the delay in response. In the future, a phased approach balancing actions against increasing risk of an outbreak would be more effective. Given the time required to mobilize large vaccine stocks, emergency vaccination did not contribute to the mitigation of explosive outbreaks of RVF.* Address correspondence to Christine C. Jost, International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya. E-mail: c.jost@cgiar.org 66 JOST AND OTHERS approach, participants were asked to focus on the period when the RVF outbreak was observed and to divide the individual piles of counters previously used to rank the livestock species by numbers into two sub-groups: those that developed RVF and those that did not. For those that had RVF, the counters were further subdivided into the proportion that died and the proportion that recovered. This method provided an estimate of the incidence of RVF in each species during the outbreak, as well as the outbreak case fatality rates and the overall mortality rate during the outbreak.Abortions attributable to RVF. Using the results of the proportional piling exercise for the relative numbers of each livestock species as the starting point, participants were asked to allocate the counters into two groups in proportion to those livestock that were pregnant before the RVF outbreak and those that were not. For the pregnant group, participants next divided the counters in proportion to those animals that aborted because of RVF and those that carried their pregnancies to full term. The pregnant pile was then restored, and participants asked to divide the counters to represent the proportions that would have been expected to abort in a normal year (with no RVF outbreak) and those that would have carried to full term. Supplementary questioning probed the causes of abortion other than RVF.Disease impact matrix score. For each livestock species a matrix was constructed on the ground, with benefits derived from that species along the y axis and diseases on the x axis. Participants were given 100 counters and asked to allocate them among the livestock-associated benefits according to the relative importance of each benefit, with the most important benefit receiving the highest number of counters. The counters for each benefit were then sub-allocated to each disease to show the relative negative ...
Peste des petits ruminants (PPR) is an important cause of mortality and production loss among sheep and goats in the developing world. Despite control efforts in a number of countries, it has continued to spread across Africa and Asia, placing an increasing burden on the livelihoods of livestock keepers and on veterinary resources in affected countries. Given the similarities between PPR and rinderpest, and the lessons learned from the successful global eradication of rinderpest, the eradication of PPR seems appealing, both eliminating an important disease and improving the livelihoods of the poor in developing countries. We conducted a benefit-cost analysis to examine the economic returns from a proposed programme for the global eradication of PPR. Based on our knowledge and experience, we developed the eradication strategy and estimated its costs. The benefits of the programme were determined from (i) the averted mortality costs, based on an analysis of the literature, (ii) the downstream impact of reduced mortality using a social accounting matrix, and (iii) the avoided control costs based on current levels of vaccination. The results of the benefit-cost analysis suggest strong economic returns from PPR eradication. Based on a 15-year programme with total discounted costs of US$2.26 billion, we estimate discounted benefits of US$76.5 billion, yielding a net benefit of US$74.2 billion. This suggests a benefit cost ratio of 33.8, and an internal rate of return (IRR) of 199%. As PPR mortality rates are highly variable in different populations, we conducted a sensitivity analysis based on lower and higher mortality scenarios. All the scenarios examined indicate that investment in PPR eradication would be highly beneficial economically. Furthermore, removing one of the major constraints to small ruminant production would be of considerable benefit to many of the most vulnerable communities in Africa and Asia.
Rinderpest was a devastating disease of livestock responsible for continent-wide famine and poverty. Centuries of veterinary advances culminated in 2011 with the UN Food and Agriculture Organization and the World Organization for Animal Health declaring global eradication of rinderpest; only the second disease to be eradicated and the greatest veterinary achievement of our time. Conventional control measures, principally mass vaccination combined with zoosanitary procedures, led to substantial declines in the incidence of rinderpest. However, during the past decades, innovative strategies were deployed for the last mile to overcome diagnostic and surveillance challenges, unanticipated variations in virus pathogenicity, circulation of disease in wildlife populations and to service remote and nomadic communities in often-unstable states. This review provides an overview of these challenges, describes how they were overcome and identifies key factors for this success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.