Context Varenicline, an effective smoking cessation medication, functions as an α4β2 nicotinic acetylcholine receptor partial agonist. It indirectly affects the dopaminergic reward system by reducing withdrawal symptoms during abstinence and by decreasing the reinforcement received from nicotine while smoking. We hypothesize that varenicline would have a third mechanism to blunt responses to smoking cues in the reward-related ventral striatum and medial orbitofrontal cortex and would be associated with a reduction in smoking cue–elicited craving. Design A laboratory model of conditioned responding and arterial spin-labeled perfusion functional magnetic resonance imaging, a biomarker of regional brain activity, was used to test our hypothesis. Perfusion functional magnetic resonance imaging is quantitative and stable across time, facilitating the measurement of medication-induced neural modifications in the brain in response to a challenge (smoking cue exposure) and in the brain in the resting condition (without provocation). Smokers were imaged during rest and during smoking cue exposure before and after a 3-week randomized placebo-controlled medication regimen. Subjects were nonabstinent to explicitly examine the effects of varenicline on cue reactivity independent of withdrawal. Setting Center for the Study of Addictions, University of Pennsylvania, Philadelphia. Subjects Subjects were nicotine-dependent smokers who responded to advertisements placed on local radio and Listservs to participate in a medication-related research study that specifically stated “this is not a Quit Smoking Study” and “smokers may be contemplating but not currently considering quitting.” Results Prerandomization smoking cues vs nonsmoking cues activated the ventral striatum and medial orbitofrontal cortex (t=3.77) and elicited subjective reports of craving (P=.006). Craving reports correlated with increased activity in the posterior cingulate (t=4.11). Administration of varenicline diminished smoking cue– elicited ventral striatum and medial orbitofrontal cortex responses (t values from −3.75 to −5.63) and reduced self-reported smoking cue–elicited craving, whereas placebo-treated subjects exhibited responses similar to those observed prior to randomization. Varenicline-induced activation of lateral orbitofrontal cortex in the brain at rest (t=5.63) predicted blunting of smoking cue responses in the medial orbitofrontal cortex (r=−0.74). Conclusions Varenicline’s reciprocal actions in the reward-activated medial orbitofrontal cortex and in the reward-evaluating lateral orbitofrontal cortex underlie a diminished smoking cue response, revealing a distinctive new action that likely contributes to its clinical efficacy.
We previously demonstrated differential activation of the mesocorticolimbic reward circuitry in response to cigarette cues independent of withdrawal. Despite robust effects, we noted considerable individual variability in brain and subjective responses. As dopamine (DA) is critical for reward and its predictive signals, genetically driven variation in DA transmission may account for the observed differences. Evidence suggests that a variable number of tandem repeats (VNTRs) polymorphism in the DA transporter (DAT) SLC6A3 gene may influence DA transport. Brain and behavioral responses may be enhanced in probands carrying the 9-repeat allele. To test this hypothesis, perfusion fMR images were acquired during cue exposure in 19 smokers genotyped for the 40 bp VNTR polymorphism in the SLC6A3 gene. Contrasts between groups revealed that 9-repeat (9-repeats) had a greater response to smoking (vs nonsmoking) cues than smokers homozygous for the 10-repeat allele (10/10-repeats) bilaterally in the interconnected ventral striatal/pallidal/orbitofrontal cortex regions (VS/VP/OFC). Activity was increased in 9-repeats and decreased in 10/10-repeats in the VS/VP/OFC (p<0.001 for all analyses). Brain activity and craving was strongly correlated in 10/10-repeats in these regions and others (anterior cingulate, parahippocampal gyrus, and insula; r2 = 0.79–0.86, p<0.001 in all regions). Alternatively, there were no significant correlations between brain and behavior in 9-repeats. There were no differences in cigarette dependence, demographics, or resting baseline neural activity between groups. These results provide evidence that genetic variation in the DAT gene contributes to the neural and behavioral responses elicited by smoking cues.
Previously we demonstrated profound effects of dopamine transporter (DAT) SLC6A3 genotype on limbic responses to smoking cues (SCs). Probands carrying at least one copy of the 9-repeat allele (9-repeat carriers) had greater neural responses to SCs in the anatomically interconnected rostral ventral striatum/medial orbitofrontal cortex (VS/mOFC), compared with homozygotes for the 10-repeat allele (10/10-repeats). To test the reliability of the initial findings, we examined perfusion functional magnetic resonance images acquired during SC exposure in a new cohort of smokers (N = 26) who were genotyped for the SLC6A3 polymorphism. In smokers overall, activity was enhanced in the VS/mOFC (t = 3.77). Contrasts between allelic groups revealed that 9-repeat carriers had a greater response to SCs in the VS (t = 3.12) and mOFC (t = 3.19). In separate groups, 9-repeat carriers showed increased activity in the VS (t = 5.47) and mOFC (T = 4.96), while no increases were observed in 10-repeats. Subjective reports of craving correlated with increased activity in reward-related structures including the extended amygdala, insula and post-central gyrus, and decreased activity in the dorsolateral prefrontal cortex, and were DAT-genotype dependent (r = 0.63–0.96). In secondary analyses, we found that The Fagerström Test for Nicotine Dependence scores correlated with enhanced SC-induced perfusion in 10/10-repeats in the insula, mOFC, medial temporal and superior frontal gyri (r = 0.50–0.82), while correlations were absent in 9-repeat carriers. Despite heterogeneity introduced by a host of factors, including variance in other genes involved in smoking behavior, we confirm that DAT genotype predicts the direction and location of neural responses to SCs.
People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.