A key indicator of changes in the terrestrial carbon cycle is shifting dissolved organic carbon (DOC) concentrations in surface waters. Arctic permafrost holds twice as much C as the atmosphere, thus recent warming and changes in atmospheric deposition to the region raise the need for a better understanding of how DOC is changing in arctic surface waters. In Kangerlussuaq, Greenland, lakewater DOC concentrations declined by 14 to 55% (absolute changes of 1 to 24 mg L−1) between 2003 and 2013, without significant changes in quality. Lakewater sulfate concentrations, but not chloride or conductivity, increased. These results suggest that similar to processes that have occurred at northern midlatitudes, increases in soil ionic strength as a result of sulfate enrichment may be linked to declining surface water DOC concentrations. Such enrichment may be occurring with enhanced non‐sea‐salt sulfate deposition. Our results reveal that rapid changes are occurring in the carbon cycle of this region of southwest Greenland.
The surface mass balance of the Greenland ice sheet has decreased in recent decades with important implications for global sea level rise. Here a climate reanalysis model is used to examine observed circulation variability and changes in precipitation across southern Greenland to gain insight into the future climate in the region. The influence on precipitation from the North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), Icelandic Low, Azores High, regional blocking patterns, and near‐surface temperature and winds are explored. Statistically significant correlations are higher between precipitation and the Icelandic Low and near‐surface winds (0.5–0.7; p < 0.05) than correlations between precipitation and either the NAO or AMO climate indices (southwest Greenland: r = 0.12 and 0.28, respectively; and southeast Greenland: r = 0.25 and −0.07, respectively). Moreover, the recent enhanced warming in the Arctic (Arctic amplification) and the increase in the Greenland Blocking Index coincide with increased mean annual precipitation and interannual variability in southwest Greenland.
Abstract. The Mount Johns (MJ) ice core (79°55′ S; 94°23′ W) was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers approximately 125 years (1883–2008), showing marked seasonal variability. Trace element concentrations in 2137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations at the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and secondary northeasterly transport in the summer. During summer months, the trajectories present slow-moving (short) transport and are more locally influenced than in other seasons. Finally, our reanalysis correlations with trace element suggest that marine-derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies. The results show that seasonal elemental concentration maxima in sea salt elements correlate well with the sea ice concentration winter maxima in the west Amundsen and Ross seas. Lastly, we observed an increased concentration of marine aerosols when sea surface temperature decreased.
What: An international community involved in the development, production, verification, and application of global and regional reanalyses of the Earth system climate met to discuss progress, challenges, and future priorities to guide the development and use of reanalyses in support of science, services, and policy making.
In this study, we aim to analyse the glacier dynamics of land-terminating glaciers in King George Island (Antarctica) between 1956 and 2018. Glacial fluctuations are estimated using space-borne remote sensing data (SPOT, Landsat, PlanetScope, Sentinel-1, Sentinel-2, WorldView-2 and TanDEM-X). The eastern sector of Warszawa Icefield witnessed continuous glacier retreat during 1979–2018 (surface loss of 30%). The decreases in the ice-covered areas of the Tower, Windy, Ecology, Baranowski and Sphinx glaciers were 70%, 31%, 25%, 25% and 21%, respectively, with their accumulation area ratios (AARs) exhibiting negative mass balances. The winter air temperature was cooler during the 1970s with warming trends in the 1980s and early 2000s followed by a cooling trend until the present day. However, the annual time series has shown high interannual variability in air temperature during these periods. We show that the AAR, dimensions, length, frontal elevation, maximum elevation, slope and changes in the terminus position influence the glacier response to climate change at various timescales. Furthermore, three geomorphic activity intensity zones and a complete paraglacial sequence are identified while contrasting the proglacial systems. Overall, subglacial deposits predominate and indicate that meltwater flows on the bed, producing wet-based thermal regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.