The farnesyltransferase inhibitor L-744,832 selectively blocks the transformed phenotype of cultured cells expressing a mutated H-ras gene and induces dramatic regression of mammary and salivary carcinomas in mouse mammary tumor virus (MMTV)-v-Ha-ras transgenic mice. To better understand how the farnesyltransferase inhibitors might be used in the treatment of human tumors, we have further explored the mechanisms by which L-744,832 induces tumor regression in a variety of transgenic mouse tumor models. We assessed whether L-744,832 induces apoptosis or alterations in cell cycle distribution and found that the tumor regression in MMTV-v-Ha-ras mice could be attributed entirely to elevation of apoptosis levels. In contrast, treatment with doxorubicin, which induces apoptosis in many tumor types, had a minimal effect on apoptosis in these tumors and resulted in a less dramatic tumor response. To determine whether functional p53 is required for L-744,832-induced apoptosis and the resultant tumor regression, MMTV-v-Ha-ras mice were interbred with p53 ؊/؊ mice. Tumors in ras/p53 ؊/؊ mice treated with L-744,832 regressed as efficiently as MMTV-v-Haras tumors, although this response was found to be mediated by both the induction of apoptosis and an increase in G 1 with a corresponding decrease in the S-phase fraction. MMTV-v-Ha-ras mice were also interbred with MMTV-c-myc mice to determine whether ras/myc tumors, which possess high levels of spontaneous apoptosis, have the potential to regress through a further increase in apoptosis levels. The ras/myc tumors were found to respond nearly as efficiently to L-744,832 treatment as the MMTV-v-Ha-ras tumors, although no induction of apoptosis was observed. Rather, the tumor regression in the ras/myc mice was found to be mediated by a large reduction in the S-phase fraction. In contrast, treatment of transgenic mice harboring an activated MMTVc-neu gene did not result in tumor regression. These results demonstrate that a farnesyltransferase inhibitor can induce regression of v-Ha-ras-bearing tumors by multiple mechanisms, including the activation of a suppressed apoptotic pathway, which is largely p53 independent, or by cell cycle alterations, depending upon the presence of various other oncogenic genetic alterations.
Several transgenic mouse tumor models were utilized to explore how speci®c genetic alterations aect the tumor cell response to chemotherapeutic agents in vivo. Speci®cally, MMTV-ras transgenic mice were interbred to p53 knock-out mice to create a model for assessing the role of p53 in chemotherapeutic responses. In addition, MMTV-ras tumors were compared to MMTV-myc and MMTV-ras/myc tumors. Mice of each genotype reproducibly develop mammary and/or salivary tumors, but tumor growth dynamics vary considerably between genotypes. MMTV-ras/p53 7/7 tumors exhibit higher S phase fractions than MMTV-ras/p53 +/+ tumors, although both tumor types display very low apoptosis levels. In contrast, MMTV-myc tumors exhibit both high S phase fractions and spontaneous apoptosis levels. Tumor-bearing mice of each genotype were treated with either doxorubicin or paclitaxel, and eects on overall tumor growth, cell cycle distribution and apoptosis were evaluated. Surprisingly, neither agent eciently induced apoptosis in any of the tumor models, including those with wildtype p53. Rather, tumor responses were mediated primarily by changes in cell cycle distribution. However, the spontaneous apoptosis levels did serve as a predictor of tumor growth response, in that only those tumors with high pretreatment apoptosis levels underwent signi®cant regression following treatment with either agent.
Tartrate-resistant acid phosphatase (TRAP) is an iron-binding protein that is highly expressed in osteoclasts. To characterize the regulation of TRAP gene expression, progressive 5' and 3' deletions of a 1.8 kb fragment containing the 5'-flanking sequence were fused to a luciferase reporter gene. Two nonoverlapping regions of this 1.8 kb fragment had promoter activity. The upstream promoter (P1) was located within the region from -881 bp to -463 bp relative to the ATG, while the downstream promoter (P2) was located between -363 bp to -1 bp in a region we have previously shown to be an intron in transcripts originating from the upstream promoter. A putative repressor region for the P2 promoter at -1846 bp to -1240 bp and a putative enhancer region at -962 bp to -881 bp relative to the ATG were identified. PCR analysis of promoter-specific transcription of the TRAP gene in various murine tissues showed that both promoters were active in several tissues. Transferrin-bound iron increased P1 promoter activity 2.5-fold and hemin decreased P1 promoter activity, but neither had any effect on P2 activity. These data show that the transcriptional regulation of the TRAP gene is complex and that iron may play a key role in TRAP gene regulation.
Little information is available on the molecular mechanisms controlling osteoclastic bone resorption. We used tartrate-resistant acid phosphatase (TRAP) to begin to investigate the regulation of bone resorption at the molecular level. TRAP is expressed at high levels in osteoclasts and may play an important role in the bone resorptive process. Therefore, we isolated the murine TRAP gene from a mouse spleen genomic library and characterized its promoter. A restriction map was generated for the 17 kb TRAP insert. A 2 kb SmaI fragment, containing the 5'-flanking region, was subcloned and the nucleotide sequence determined. Sequence analysis of the SmaI fragment revealed the presence of numerous candidate transcription factor binding sequences, including those for AP1 and H-APF-1. The H-APF-1 site matches the consensus sequence for the IL-6-regulated transcription factor. An intron was identified at -1 to -393 bp relative to the ATG. The presence of an intron was confirmed by PCR analysis of RNA isolated from murine osteoclasts. Primer extension analysis indicated the presence of a transcription initiation site at -552 bp from the ATG. The region from -1846 to 2bp relative to the ATG initiation codon drove the transient expression of a luciferase reporter gene when transfected into HRE H9 rabbit endometrial cells. PMA treatment of HRE H9 cells enhanced luciferase transcription approximately threefold. These data suggest that the TRAP promoter is complex and contains multiple regulatory elements. The availability of the TRAP promoter may also permit production of transgenic mice, which can be used to develop previously unavailable osteoclast cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.