Tumors develop through successive stages characterized by changes in gene expression and protein function. Gene expression profiling of pancreatic islet tumors in a mouse model of cancer revealed upregulation of cathepsin cysteine proteases. Cathepsin activity was assessed using chemical probes allowing biochemical and in vivo imaging, revealing increased activity associated with the angiogenic vasculature and invasive fronts of carcinomas, and differential expression in immune, endothelial, and cancer cells. A broad-spectrum cysteine cathepsin inhibitor was used to pharmacologically knock out cathepsin function at different stages of tumorigenesis, impairing angiogenic switching in progenitor lesions, as well as tumor growth, vascularity, and invasiveness. Cysteine cathepsins are also upregulated during HPV16-induced cervical carcinogenesis, further encouraging consideration of this protease family as a therapeutic target in human cancers.
Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR-pathway targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor this is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/day of ARN-509, whereas the same response required 100 mg/kg/day of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.
Despite the impressive clinical activity of the second-generation antiandrogens enzalutamide and ARN-509 in patients with prostate cancer, acquired resistance invariably emerges. To identify the molecular mechanisms underlying acquired resistance, we developed and characterized cell lines resistant to ARN-509 and enzalutamide. In a subset of cell lines, ARN-509 and enzalutamide exhibit agonist activity due to a missense mutation (F876L) in the ligand-binding domain of the androgen receptor (AR). AR F876L is suffi cient to confer resistance to ARN-509 and enzalutamide in in vitro and in vivo models of castration-resistant prostate cancer (CRPC). Importantly, the AR F876L mutant is detected in plasma DNA from ARN-509-treated patients with progressive CRPC. Thus, selective outgrowth of AR F876L is a clinically relevant mechanism of second-generation antiandrogen resistance that can potentially be targeted with next-generation antiandrogens. SIGNIFICANCE:A missense mutation in the ligand-binding domain of the androgen receptor F876L confers resistance to the second-generation antiandrogens enzalutamide and ARN-509 in preclinical models of AR function and prostate cancer and is detected in plasma DNA from ARN-509-treated patients with progressive disease. These results chart a new path for the discovery and development of next-generation antiandrogens that could be coupled with a blood-based companion diagnostic to guide treatment decisions. Cancer Discov; 3(9);
In the RIP1-Tag2 mouse model of pancreatic islet carcinoma, angiogenesis is switched on in a discrete premalignant stage of tumor development, persisting thereafter. Signaling through VEGF receptor tyrosine kinases is a well-established component of angiogenic regulation. We show that five VEGF ligand genes are expressed in normal islets and throughout islet tumorigenesis. To begin dissecting their contributions, we produced an islet beta cell specific knockout of VEGF-A, resulting in islets with reduced vascularity but largely normal physiology. In RIP1-Tag2 mice wherein most oncogene-expressing cells had deleted the VEGF-A gene, both angiogenic switching and tumor growth were severely disrupted, as was the neovasculature. Thus, VEGF-A is crucial for angiogenesis in a prototypical model of carcinogenesis, whose loss is not readily compensated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.