Metastatic prostate cancer is treated with drugs that antagonize androgen action but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for non-steroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a phase I/II clinical trial, 13 of 30 (43 percent) showed sustained declines (by >50 percent) in serum levels of prostate specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.
Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR-pathway targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor this is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/day of ARN-509, whereas the same response required 100 mg/kg/day of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.
Summary Activation of the androgen receptor is critical for prostate cancer growth at all points in the illness. Currently therapies targeting the androgen receptor, including androgen depletion approaches and antiandrogens, do not completely inhibit androgen receptor activity. Prostate cancer cells develop resistance to castration by acquiring changes such as AR overexpression that result in reactivation of the receptor. Based on understanding of these resistance mechanisms and androgen synthesis pathways, novel antiandrogens and androgen depleting agents have been tested. Notably, MDV3100, a novel antiandrogen designed for activity in prostate cancer model systems with overexpressed AR and, abiraterone acetate, a 17-α-hydroxylase/17,20 lyase inhibitor that blocks steroid biosynthesis in the adrenal gland and in the tumor, have demonstrated significant activity in early phase trials and are being tested in the phase III setting.
Novel estrogenic therapies are needed that ameliorate menopausal symptoms and have the bone-sparing effects of endogenous estrogens but do not promote breast or uterine cancer. Recent evidence suggests that selective activation of the estrogen receptor (ER)-beta subtype inhibits breast cancer cell proliferation. To establish whether ERbeta-selective ligands represent a viable approach to improve hormone therapy, we investigated whether the estrogenic activities present in an herbal extract, MF101, used to treat hot flashes, are ERbeta selective. MF101 promoted ERbeta, but not ERalpha, activation of an estrogen response element upstream of the luciferase reporter gene. MF101 also selectively regulates transcription of endogenous genes through ERbeta. The ERbeta selectivity was not due to differential binding because MF101 binds equally to ERalpha and ERbeta. Fluorescence resonance energy transfer and protease digestion studies showed that MF101 produces a different conformation in ERalpha from ERbeta when compared with the conformations produced by estradiol. The specific conformational change induced by MF101 allows ERbeta to bind to an estrogen response element and recruit coregulatory proteins that are required for gene activation. MF101 did not activate the ERalpha-regulated proliferative genes, c-myc and cyclin D1, or stimulate MCF-7 breast cancer cell proliferation or tumor formation in a mouse xenograft model. Our results demonstrate that herbal ERbeta-selective estrogens may be a safer alternative for hormone therapy than estrogens that nonselectively activate both ER subtypes.
MYC and phosphoinositide 3-kinase (PI3K)-pathway deregulation are common in human prostate cancer. Through examination of 194 human prostate tumors, we observed statistically significant co-occurrence of MYC amplification and PI3K-pathway alteration, raising the possibility that these two lesions cooperate in prostate cancer progression. To investigate this, we generated bigenic mice in which both activated human AKT1 and human MYC are expressed in the prostate (MPAKT/Hi-MYC model). In contrast to mice expressing AKT1 alone (MPAKT model) or MYC alone (Hi-MYC model), the bigenic phenotype demonstrates accelerated progression of mouse prostate intraepithelial neoplasia (mPIN) to microinvasive disease with disruption of basement membrane, significant stromal remodeling and infiltration of macrophages, B- and T-lymphocytes, similar to inflammation observed in human prostate tumors. In contrast to the reversibility of mPIN lesions in young MPAKT mice after treatment with mTOR inhibitors, Hi-MYC and bigenic MPAKT/Hi-MYC mice were resistant. Additionally, older MPAKT mice showed reduced sensitivity to mTOR inhibition, suggesting that additional genetic events may dampen mTOR dependence. Since increased MYC expression is an early feature of many human prostate cancers, these data have implications for treatment of human prostate cancers with PI3K-pathway alterations using mTOR inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.