We performed an extensive two-dimensional differential in-gel electrophoresis proteomic analysis of the cellular changes in human T cells upon human immunodeficiency virus type 1 (HIV-1) infection. We detected 2,000 protein spots, 15% of which were differentially expressed at peak infection. A total of 93 proteins that changed in relative abundance were identified. Of these, 27 were found to be significantly downregulated and 66 were upregulated at peak HIV infection. Early in infection, only a small group of proteins was changed. A clear and consistent program of metabolic rerouting could be seen, in which glycolysis was downregulated and mitochondrial oxidation enhanced. Proteins that participate in apoptotic signaling were also significantly influenced. Apart from these changes, the virus also strongly influenced levels of proteins involved in intracellular transport. These and other results are discussed in light of previous microarray and proteomic studies regarding the impact of HIV-1 infection on cellular mRNA and protein content.
In-depth human erythrocyte proteome studies are severely hampered by the presence of hemoglobin and carbonic anhydrase-1, which account for more than 98% of the total erythrocyte soluble protein content. We developed a specific depletion approach that resulted in a drastic increase in the number of identified proteins. This depletion technique is valuable for proteome studies of human erythrocyte disorders with unknown etiology and of tissue samples that contain blood.
Aspergillus niger is an important cell factory for the industrial production of enzymes. These enzymes are released into the culture medium, from which they can be easily isolated. Here, we determined with stable isotope dimethyl labeling the secretome of five concentric zones of 7-day-old xylose-grown colonies of A. niger that had either or not been treated with cycloheximide. As expected, cycloheximide blocked secretion of proteins at the periphery of the colony. Unexpectedly, protein release was increased by cycloheximide in the intermediate and central zones of the mycelium when compared to nontreated colonies. Electron microscopy indicated that this is due to partial degradation of the cell wall. In total, 124 proteins were identified in cycloheximide-treated colonies, of which 19 secreted proteins had not been identified before. Within the pool of 124 proteins, 53 secreted proteins were absent in nontreated colonies, and additionally, 35 proteins were released ≥4-fold in the central and subperipheral zones of cycloheximide-treated colonies when compared to nontreated colonies. The composition of the secretome in each of the five concentric zones differed. This study thus describes spatial release of proteins in A. niger, which is instrumental in understanding how fungi degrade complex substrates in nature.
Genome sequencing of arguably the simplest known animal, Trichoplax adhaerens, uncovered a rich array of transcription factor and signalling pathway genes. Although the existence of such genes allows speculation about the presence of complex regulatory events, it does not reveal the level of actual protein expression and functionalization through posttranslational modifications. Using high-resolution mass spectrometry, we here semi-quantify 6,516 predicted proteins, revealing evidence of horizontal gene transfer and the presence at the protein level of nodes important in animal signalling pathways. Moreover, our data demonstrate a remarkably high activity of tyrosine phosphorylation, in line with the hypothesized burst of tyrosine-regulated signalling at the instance of animal multicellularity. Together, this Trichoplax proteomics data set offers significant new insight into the mechanisms underlying the emergence of metazoan multicellularity and provides a resource for interested researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.