Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.
The red blood cell depends solely on the anaerobic conversion of glucose by the Embden-Meyerhof pathway for the generation and storage of high-energy phosphates, which is necessary for the maintenance of a number of vital functions. Many red blood cell enzymopathies have been described that disturb the erythrocyte's integrity, shorten its cellular survival, and result in hemolytic anemia. By far the majority of these enzymopathies are hereditary in nature. In this review, we summarize the current knowledge regarding the genetic, biochemical, and struc- IntroductionThe moment the mature red blood cell leaves the bone marrow, it is optimally adapted to perform the binding and transport of oxygen and its delivery to all tissues. This is the most important task of the erythrocyte during its estimated 120-day journey in the bloodstream. The membrane, hemoglobin, and proteins involved in metabolic pathways of the red blood cell interact to modulate oxygen transport, protect hemoglobin from oxidant-induced damage, and maintain the osmotic environment of the cell. The biconcave shape of the red blood cell provides an optimal area for respiratory exchange. The latter requires passage through microcapillaries, which is achieved by a drastic modification of its biconcave shape, made possible only by the loss of the nucleus and cytoplasmic organelles and, consequently, the ability to synthesize proteins. 1 During their intravascular lifespan, erythrocytes require energy to maintain a number of vital cell functions. These include (1) maintenance of glycolysis; (2) maintenance of the electrolyte gradient between plasma and red cell cytoplasm through the activity of adenosine triphosphate (ATP)-driven membrane pumps; (3) synthesis of glutathione and other metabolites; (4) purine and pyrimidine metabolism; (5) maintenance of hemoglobin's iron in its functional, reduced, ferrous state; (6) protection of metabolic enzymes, hemoglobin, and membrane proteins from oxidative denaturation; and (7) preservation of membrane phospholipid asymmetry. Because of the lack of nuclei and mitochondria, mature red blood cells are incapable of generating energy via the (oxidative) Krebs cycle. Instead, erythrocytes depend on the anaerobic conversion of glucose by the Embden-Meyerhof pathway for the generation and storage of high-energy phosphates (Figure 1). Moreover, erythrocytes possess a unique glycolytic bypass for the production of 2,3-bisphosphoglycerate (2,3-DPG), the RapoportLuebering shunt. This shunt bypasses the phosphoglycerate kinase (PGK) step and accounts for the synthesis and regulation of 2,3-DPG levels that decrease hemoglobin's affinity for oxygen. 2 In addition, 2,3-DPG constitutes an energy buffer.A number of red blood cell enzymopathies have been described in the Embden-Meyerhof pathway. [3][4][5][6] The lack of characteristic changes in red blood cell morphology differentiates the glycolytic enzymopathies from erythrocyte membrane defects and most hemoglobinopathies. In general, red blood cell enzymopathies cause chronic n...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.