Burkholderia multivorans causes opportunistic pulmonary infections and is intrinsically resistant to many antibacterial compounds including the hydrophobic biocide triclosan. Chemical permeabilization of the Pseudomonas aeruginosa outer membrane affects sensitization to hydrophobic substances. The purpose of the present study was to determine if B. multivorans is similarly susceptive suggesting that outer membrane impermeability properties underlie triclosan resistance. Antibiograms and conventional macrobroth dilution bioassays were employed to establish baseline susceptibility levels to hydrophobic antibacterial compounds. Outer membrane permeabilizers compound 48/80, polymyxin B, polymyxin B-nonapeptide, and ethylenediaminetetraacetic acid were used in attempts to sensitize disparate B. multivorans isolates to the hydrophobic agents novobiocin and triclosan, and to potentiate partitioning of the hydrophobic fluorescent probe 1-N-phenylnapthylamine (NPN). The lipophilic agent resistance profiles for all B. multivorans strains were essentially the same as that of P. aeruginosa except that they were resistant to polymyxin B. Moreover, they resisted sensitization to hydrophobic compounds and remained inaccessible to NPN when treated with outer membrane permeabilizers. These data support the notion that while both phylogenetically-related organisms exhibit general intrinsic resistance properties to hydrophobic substances, the outer membrane of B. multivorans either resists permeabilization by chemical modification or sensitization is mitigated by a supplemental mechanism not present in P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.