Detailed structural analysis of muscles normally used to study myosin cross-bridge behavior (e.g., frog sartorius muscle, insect flight muscle) is extremely difficult due to the statistical disorder inherent in their myosin filament arrays. Bony fish muscle is different from all other muscle types in having a myosin filament (A-Band) array with good three-dimensional (crystalline) regularity that is coherent right across each myofibril. Rigorous structure analysis is feasible with fish muscle. We show that low-angle x-ray diffraction patterns from plaice fin muscle contain characteristic vertebrate layer lines at orders of 429 (+/- 0.2) A, that these layer lines are well sampled by row-lines from a simple hexagonal lattice of a-spacing 470 (+/- 2.0) A at rest length and that there are meridional reflections, due to axial perturbations of the basic helix of myosin heads, similar in position to those from frog muscle but differing in relative intensities. Clear trends based on modeling to a resolution of 130 A of the observed intensities in the low angle x-ray diffraction pattern from relaxed plaice fin muscle suggest that: (a) the pattern out to 130 A is more sensitive to the distribution of the two heads than it is to details of the head shape, (b) both heads in one myosin molecule probably tilt axially in the same direction by approximately 20-40 degrees relative to a normal to the thick filament backbone, (c) the center of mass of the heads is at 145 to 160 A radius, and (d) the two heads form a compact structure by lying closely adjacent to each other and almost parallel. Little rotational disorder of the heads can occur. Because of its crystallinity, bony fish muscle provides a uniquely useful structural probe of myosin cross-bridge behavior in other muscle states such as rigor and active contraction.
Using data from fast time-resolved x-ray diffraction experiments on the synchrotrons at Daresbury and (Deutsches Elektronen Synchrotron [DESY]), it is shown that during contraction of fish muscle there are at least two distinct configurations of myosin cross-bridges on actin, that they appear to have different tension producing properties and that they probably differ in the axial tilt of the cross-bridges on actin. Evidence is presented for newly observed myosin-based layer lines in patterns from active fish muscle, together with intensity changes of the actin layer lines. On the equator, the 110 reflection changes much faster (time for 50% change t1/2 = 21 +/- 4 ms after activation) than the 100 reflection (t1/2 = 35 +/- 8 ms) and tension (t1/2 = 41 +/- 3 ms) during the rising phase of tetanic contractions. These and higher order reflections have been used to show the time course of mass attachment at actin during this rising phase. Mass arrival (t1/2 = 25 ms) precedes tension by approximately 15 ms. Analysis has been carried out to evaluate the effects of changes in sarcomere length during the tetanus. It is shown that any such effects are very small. Difference "equatorial" electron density maps between active muscle at a time when mass arrival at actin is just complete, but the tension is still rising, and at a later time well into the tension plateau, show that the structural difference between the lower and higher force states corresponds to mass movement consistent with axial swinging of heads from a nonstereospecific actin attached state (low force) to a more stereospecific (high force) state.
The structures of vertebrate skeletal muscles (particularly from frog and fish) in the rigor state are analysed in terms of the concept of target areas on actin filaments. Assuming that 100% of the heads are to be attached to actin in rigor, then satisfactory qualitative low-resolution modelling of observed X-ray diffraction data is obtained if the outer ends of these myosin heads can move axially (total range about 200A) and azimuthally (total range less than 60 degrees) from their original lattice sites on the myosin filament surface to attach in defined target areas on the actin filaments. On this basis, each actin target area comprises about four actin monomers along one of the two long-pitched helical strands of the actin filament (about 200 A) or an azimuthal range of actin binding sites of about 100 degrees around the thin filament axis. If myosin heads simply label in a non-specific way the nearest actin monomers to them, as could occur with non-specific transient attachment in a 'weak binding' state, then the predicted X-ray diffraction pattern would comprise layer lines at the same axial spacings (orders of 429 A) as those seen in patterns from resting muscle. It is shown that actin target areas in vertebrate skeletal muscles are probably arranged on an approximate 62 (right-handed) helix of pitch (P) of about 720 A, subunit translation P/6 and near repeat P/2. Troponin position need not be considered in defining the labelling pattern of cross-bridges on this 62 helix of target areas; the target areas appear to be defined solely by the azimuthal position of the actin binding sites. The distribution of actin filament labelling patterns could be regular in fish muscle which has a 'crystalline' A-band, but will be irregular in higher vertebrate muscles such as frog sartorius muscle.
Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.