2 The abbreviations used are: atRA, all-trans-retinoic acid; CFU, colony-forming unit; RE, retinyl ester; ROL, retinol; ROL-d 8 , all-trans-retinol-d 8 ; RP-d 4 , all-trans-retinyl palmitate-d 4 ; ANOVA, analysis of variance; BM, bone marrow; MRM, multiple reaction monitoring; CRABP, cellular retinoic acidbinding protein; AUC, area under the curve; RP-d 4 , all-trans-retinyl palmitate-d 4 ; IS, internal standard; ACN, acetonitrile; CL, clearance; dpp, day post-partum; Lrat, lecithin:retinol acetyltransferase.
Vitamin A is vital to maternal–fetal health and pregnancy outcomes. However, little is known about pregnancy associated changes in maternal vitamin A homeostasis and concentrations of circulating retinol metabolites. The goal of this study was to characterize retinoid concentrations in healthy women (n = 23) during two stages of pregnancy (25–28 weeks gestation and 28–32 weeks gestation) as compared to ≥3 months postpartum. It was hypothesized that plasma retinol, retinol binding protein 4 (RBP4), transthyretin and albumin concentrations would decline during pregnancy and return to baseline by 3 months postpartum. At 25–28 weeks gestation, plasma retinol (−27%), 4-oxo-13-cis-retinoic acid (−34%), and albumin (−22%) concentrations were significantly lower, and all-trans-retinoic acid (+48%) concentrations were significantly higher compared to ≥3 months postpartum in healthy women. In addition, at 28–32 weeks gestation, plasma retinol (−41%), retinol binding protein 4 (RBP4; −17%), transthyretin (TTR; −21%), albumin (−26%), 13-cis-retinoic acid (−23%) and 4-oxo-13-cis-retinoic acid (−48%) concentrations were significantly lower, whereas plasma all-trans-retinoic acid concentrations (+30%) were significantly higher than ≥3 months postpartum. Collectively, the data demonstrates that in healthy pregnancies, retinol plasma concentrations are lower, but all-trans-retinoic acid concentrations are higher than postpartum.
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, is an essential signaling molecule in all chordates. Global knockouts of the atRA clearing enzymes Cyp26a1 or Cyp26b1 are embryonic lethal. In adult rodents, inhibition of Cyp26a1 and Cyp26b1 increases atRA concentrations and signaling. However, postnatal knockout of Cyp26a1 does not cause a severe phenotype. We hypothesized that Cyp26b1 is the main atRA clearing Cyp in postnatal mammals. This hypothesis was tested by generating tamoxifen-inducible knockout mouse models of Cyp26b1 alone or with Cyp26a1. Both mouse models showed dermatitis, blepharitis, and splenomegaly. Histology showed infiltration of inflammatory cells including neutrophils and T lymphocytes into the skin and hyperkeratosis/hyperplasia of the nonglandular stomach. The mice lacking both Cyp26a1 and Cyp26b1 also had a reduced lifespan, failed to gain weight, and showed fat atrophy. There were significant changes in vitamin A homeostasis. Postnatal knockout of Cyp26b1 resulted in increased atRA concentrations in the skin while the postnatal knockout of both Cyp26a1 and Cyp26b1 resulted in increased atRA concentrations in the liver, serum, skin, spleen, and intestines. This study demonstrates the paramount role of Cyp26b1 in regulating retinoid homeostasis in postnatal life. K E Y W O R D S cytochrome P450, dermatitis, inflammation, retinoic acid, vitamin A 2 | SNYDER Et al. 2 | MATERIALS AND METHODS 2.1 | Ethics statement, animal care, and breeding All the procedures involving mice prior to the commencement of these studies were approved by the Washington State University Committee on the Use and Care of Animals. The mouse colonies were maintained in a temperature-and humidity-controlled environment with food and water provided ad libitum. The mice were fed LabDiet 5K67 containing 1.5 ppm of carotene and 20 IU/g of vitamin
The prevalence of obesity continues to rise, underscoring the need to better understand the pathways mediating adipose tissue (AT) expansion. All-trans-retinoic acid (atRA), a bioactive vitamin A metabolite, regulates adipogenesis and energy metabolism, and, in rodent studies, aberrant vitamin A metabolism appears a key facet of metabolic dysregulation. The relevance of these findings to human disease is unknown, as are the specific enzymes implicated in vitamin A metabolism within human AT. We hypothesized that in human AT, family 1A aldehyde dehydrogenase (ALDH1A) enzymes contribute to atRA biosynthesis in a depot-specific manner. To test this hypothesis, parallel samples of subcutaneous and omental AT from participants (n = 15) were collected during elective abdominal surgeries to quantify atRA biosynthesis and key atRA synthesizing enzymes. ALDH1A1 was the most abundant ALDH1A isoform in both AT depots with expression approximately twofold higher in omental than subcutaneous AT. ALDH1A2 was detected only in omental AT. Formation velocity of atRA was approximately threefold higher (p = 0.0001) in omental AT (9.8 [7.6, 11.2]) pmol/min/mg) than subcutaneous AT (3.2 [2.1,4.0] pmol/min/mg) and correlated with ALDH1A2 expression in omental AT (β-coefficient = 3.07, p = 0.0007) and with ALDH1A1 expression in subcutaneous AT (β-coefficient = 0.13, p = 0.003). Despite a positive correlation between body mass index (BMI) and omental ALDH1A1 protein expression (Spearman r = 0.65, p = 0.01), BMI did not correlate with atRA formation.Our findings suggest that ALDH1A2 is the primary mediator of atRA formation in omental AT, whereas ALDH1A1 is the principal atRA-synthesizing enzyme in subcutaneous AT. These data highlight AT depot as a critical variable for defining the roles of retinoids in human AT biology.
The mechanism of cytochrome P450 2D6 (CYP2D6) induction during pregnancy has not been evaluated in humans. This study assessed the changes in CYP2D6 and CYP3A activities during pregnancy and postpartum, and the effect of vitamin A administration on CYP2D6 activity. Forty-seven pregnant CYP2D6 extensive metabolizers (with CYP2D6 activity scores of 1 to 2) received dextromethorphan (DM) 30 mg orally as a single dose during 3 study windows (at 25 to 28 weeks of gestation, study day 1; at 28 to 32 weeks of gestation, study day 2; and at ≥3 months postpartum, study day 3). Participants were randomly assigned to groups with no supplemental vitamin A (control) or with supplemental vitamin A (10 000 IU/day orally for 3 to 4 weeks) after study day 1. Concentrations of DM and its metabolites, dextrorphan (DX) and 3-hydroxymorphinan (3HM), were determined from a 2-hour post-dose plasma sample and cumulative 4-hour urine sample using liquid chromatography-mass spectrometry. Change in CYP2D6 activity was assessed using DX/DM plasma and urine metabolic ratios. The activity change in CYP3A was also assessed using the 3HM/DM urine metabolic ratio. The DX/DM urine ratio was significantly higher (43%) in pregnancy compared with postpartum (P = .03), indicating increased CYP2D6 activity. The DX/DM plasma ratio was substantially higher in the participants,with an activity score of 1.0 during pregnancy (P = .04) compared with postpartum.The 3HM/DM urinary ratio was significantly higher (92%) during pregnancy, reflecting increased CYP3A activity (P = .02). Vitamin A supplementation did not change CYP2D6 activity during pregnancy; however, plasma all-trans retinoic acid (atRA) concentrations were positively correlated with increased CYP2D6 activity during pregnancy and postpartum. Further research is needed to elucidate the mechanisms of increased CYP2D6 activity during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.