It is feasible to implement a CPNB program to provide an alternative method of inpatient and outpatient postoperative analgesia after orthopedic surgery in children when appropriate expertise is available. Patient and family education along with frequent follow-up are crucial to detect and address adverse events promptly.
Anesthetic drugs have the potential to contribute to global warming. There is some debate about the overall impact of anesthetic drugs relative to carbon dioxide, but there is no question that practice patterns can limit the degree of environmental contamination. In particular, careful attention to managing fresh gas flow can use anesthetic drugs more efficiently--reducing waste while achieving the same effect on the patient. The environmental impact of a single case may be minimal, but when compounded over an entire career, the manner in which fresh gas flow is managed by each individual practitioner can make a significant difference in the volume of anesthetic gases released into the atmosphere. The maintenance phase of anesthesia is the best opportunity to reduce fresh gas flow because circuit gas concentrations are relatively stable and it is often the longest phase of the procedure. There are, however, methods for managing fresh gas flow during induction and emergence that can reduce the amount of wasted anesthetic vapor. This article provides background information and discusses strategies for managing fresh gas flow during each phase of anesthesia with the goal of reducing waste when using a circle anesthesia system. Monitoring oxygen and anesthetic gas concentrations is essential to implementing these strategies safely and effectively. Future technological advances in anesthetic delivery systems are needed to make it less challenging to manage fresh gas flow.
Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.