ABSTRACT. The tropical glaciers of the Cordillera Blanca, Peru, are rapidly retreating, resulting in complex impacts on the hydrology of the upper Río Santa watershed. The effect of this retreat on water resources is evaluated by analyzing historical and recent time series of daily discharge at nine measurement points. Using the Mann-Kendall nonparametric statistical test, the significance of trends in three hydrograph parameters was studied. Results are interpreted using synthetic time series generated from a hydrologic model that calculates hydrographs based on glacier retreat sequences. The results suggest that seven of the nine study watersheds have probably crossed a critical transition point, and now exhibit decreasing dry-season discharge. Our results suggest also that once the glaciers completely melt, annual discharge will be lower than present by 2-30% depending on the watershed. The retreat influence on discharge will be more pronounced during the dry season than at other periods of the year. At La Balsa, which measures discharge from the upper Río Santa, the glacier retreat could lead to a decrease in dry-season average discharge of 30%.
[1] Hyporheic flow can be extremely variable in space and time, and our understanding of complicated flow systems, such as exchange around small dams, has generally been limited to reach-averaged parameters or discrete point measurements. Emerging techniques are starting to fill the void between these disparate scales, increasing the utility of hyporheic research. When ambient diurnal temperature patterns are collected at high spatial resolution across vertical profiles in the streambed, the data can be applied to one-dimensional conduction-advection-dispersion models to quantitatively describe the vertical component of hyporheic flux at the same high spatial resolution. We have built on recent work by constructing custom fiber-optic distributed temperature sensors with 0.014 m spatial resolution that are robust enough to be installed by hand into the streambed, maintain high signal strength, and permit several sensors to be run in series off a single distributed temperature sensing unit. Data were collected continuously for 1 month above two beaver dams in a Wyoming stream to determine the spatial and temporal nature of vertical flux induced by the dams. Flux was organized by streambed morphology with strong, variable gradients with depth indicating a transition to horizontal flow across a spectrum of hyporheic flow paths. Several profiles showed contrasting temporal trends as discharge decreased by 45%. The high-resolution thermal sensors, combined with powerful analytical techniques, allowed a distributed quantitative description of the morphology-driven hyporheic system not previously possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.