A Product Service-System (PSS) is an integrated combination of products and services. This western concept embraces a service led competitive strategy, environmental sustainability, and the basis to differentiate from competitors who simply offer lower priced products. This paper aims to report the state-of-the-art of PSS research by presenting a clinical review of literature currently available on this topic. The literature is classified and the major outcomes of each study are addressed and analysed.On this basis, this paper defines the PSS concept, reports on its origin and features, gives examples of applications along with potential benefits and barriers to adoption, summarises available tools and methodologies, and identifies future research challenges. AbstractA Product Service-System (PSS) is an integrated combination of products and services. This western concept embraces a service led competitive strategy, environmental sustainability, and the basis to differentiate from competitors who simply offer lower priced products. This paper aims to report the state-of-the-art of PSS research by presenting a clinical review of literature currently available on this topic. The literature is classified and the major outcomes of each study are addressed and analysed.On this basis, this paper defines the PSS concept, reports on its origin and features, gives examples of applications along with potential benefits and barriers to adoption, summarises available tools and methodologies, and identifies future research challenges.
Microfluidic devices have several applications in different fields, such as chemistry, medicine and biotechnology. Many research activities are currently investigating the manufacturing of integrated microfluidic devices on a mass-production scale with relatively low costs. This is especially important for applications where disposable devices are used for medical analysis. Micromoulding of thermoplastic polymers is a developing process with great potential for producing low-cost microfluidic devices. Among different micromoulding techniques, micro-injection moulding is one of the most promising processes suitable for manufacturing polymeric disposable microfluidic devices. This review paper aims at presenting the main significant developments that have been achieved in different aspects of micro-injection moulding of microfluidic devices. Aspects covered include device design, machine capabilities, mould manufacturing, material selection and process parameters. Problems, challenges and potential areas for research are highlighted.
The modification of epoxy resins with nanoparticles could endow the materials with some superior properties such as broadening of the glass transition temperatures, modest increases in the glassy modulus, low dielectric constant, and significant increases in key mechanical properties. In the last 15 years, some studies have shown the potential improvement in properties and performances of fibre reinforced polymer matrix materials in which nano and micro‐scale particles were incorporated. From the existing literature, considerable effort has been given to the synthesis and processing of these unique polymers, but relatively little work has focused on the fibre reinforced epoxy composites. The purpose of this work, therefore, is to review the available literature in epoxy‐fibre reinforced composites manufactured using carbon nanotubes, carbon nanofibre and nanoclays for reinforcement.
Surfaces are the primary place of contact between a biomaterial and its host organism. Typically, prostheses have to fulfil demanding structural and mechanical requirements, yet the material best for those functions may be bio-incompatible. Surface treatment or coating provides a means to overcome that problem, which means both integration within the host physiology and stabilization with respect to corrosion and wear. The adsorption of biomacromolecules is pivotal for biocompatibility. The impossibility of keeping proteins away from most implants means that very careful consideration has to be given to this aspect, and both prevention (for bloodstream implants) and promotion (for bone replacement and repair) occur with equal importance. This paper also considers the metrology of relevant physical and chemical aspects of surfaces.
Micro-powder injection moulding (μPIM) is a fast-developing micro-manufacturing technique for the production of metal and ceramic components. Shape complexity, dimensional accuracy, replication fidelity, material variety combined with high-volume capabilities are some of the key advantages of the technology. This paper assesses the capabilities and limitations of μPIM as a micromanufacturing technique by reviewing the latest developments in the area and by considering potential improvements. The basic elements of the process chain, variant processes and simulation attempts are discussed and evaluated. Challenges and research gaps are highlighted, and potential areas for improvement are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.