Microfluidic devices have several applications in different fields, such as chemistry, medicine and biotechnology. Many research activities are currently investigating the manufacturing of integrated microfluidic devices on a mass-production scale with relatively low costs. This is especially important for applications where disposable devices are used for medical analysis. Micromoulding of thermoplastic polymers is a developing process with great potential for producing low-cost microfluidic devices. Among different micromoulding techniques, micro-injection moulding is one of the most promising processes suitable for manufacturing polymeric disposable microfluidic devices. This review paper aims at presenting the main significant developments that have been achieved in different aspects of micro-injection moulding of microfluidic devices. Aspects covered include device design, machine capabilities, mould manufacturing, material selection and process parameters. Problems, challenges and potential areas for research are highlighted.
Micro-powder injection moulding (μPIM) is a fast-developing micro-manufacturing technique for the production of metal and ceramic components. Shape complexity, dimensional accuracy, replication fidelity, material variety combined with high-volume capabilities are some of the key advantages of the technology. This paper assesses the capabilities and limitations of μPIM as a micromanufacturing technique by reviewing the latest developments in the area and by considering potential improvements. The basic elements of the process chain, variant processes and simulation attempts are discussed and evaluated. Challenges and research gaps are highlighted, and potential areas for improvement are presented.
This article presents a transformation process towards lean product development in an aerospace industry. This transformation was achieved in two main stages: the first was to integrate the principles of set-based concurrent engineering into an existing product development model of an aerospace company. This stage included defining activities and associated tools. The second stage was to implement the developed model in a research-based industrial case study, a helicopter engine in this case. Three main outcomes were realised from this work. First, it presented an industrial case of lean transformation in product development, where the leanness of an existing model was enhanced by embedding set-based concurrent engineering principles. Second, the developed model was structured into a set of well-defined activities and associated tools that were previously scattered or redundant. Finally, the developed model was trialled in an industrial project of a helicopter engine, tested to evaluate its value in enhancing the innovation level and reducing risk. The work presented in this article focused on early stage system level design, and future work will extend the implementation of set-based concurrent engineering to subsystem and component levels.
This paper addresses the use of micro-injection moulding for the fabrication of polymeric parts with microfeatures. Five separate parts with different micro-feature designs are moulded of Polymethylmethacrylate. The design-of-experiments approach is applied to correlate the quality of the parts to the processing parameters. Five processing parameters are investigated using a screening half-factorial experimentation plan to determine their possible effect on the filling quality of the moulded parts. The part mass is used as an output parameter to reflect the filling of the parts. The experiments showed that the holding pressure is the most significant processing parameter for all the different shapes. In addition, the experiments showed that the geometry of the parts plays a role in determining the significant processing parameters. For a more complex part, injection speed and mould temperature became statistically significant. A desirability function approach was successfully used to improve the filling quality of each part.
The aim of this paper is to provide a method for measuring shrinkage in micro injection moulded (μ-IM) partsno standardised approach being reported as yet in the literature. This study investigates the feasibility of implementing the international standards used to investigate shrinkage in conventional (macro) moulding at the micro-scale. Following a similar experimental procedure to the relevant standards, micro-moulded polyoxymethylene (POM) specimens were produced, and the influence of processing parameters on their shrinkage was analysed using the design of experiment (DoE) approach. The analysis results showed that the methodology was capable of detecting factors that had a statistically significant effect on shrinkage at the micro-scale, in both parallel to, and normal to, the flow directions for moulding, post-moulding and total shrinkage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.