Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care.
Two distinct G protein-coupled purinergic receptors, P2Y1 and P2Y12, mediate ADP-driven platelet activation. The clinical effectiveness of P2Y12 blockade is well established. Recent preclinical data suggest that P2Y1 and P2Y12 inhibition provide equivalent antithrombotic efficacy, while targeting P2Y1 has the potential for reduced bleeding liability. In this account, the discovery of a 2-(phenoxypyridine)-3-phenylurea chemotype that inhibited ADP-mediated platelet aggregation in human blood samples is described. Optimization of this series led to the identification of compound 16, 1-(2-(2-tert-butylphenoxy)pyridin-3-yl)-3-4-(trifluoromethoxy)phenylurea, which demonstrated a 68 ± 7% thrombus weight reduction in an established rat arterial thrombosis model (10 mg/kg plus 10 mg/kg/h) while only prolonging cuticle and mesenteric bleeding times by 3.3- and 3.1-fold, respectively, in provoked rat bleeding time models. These results suggest that a P2Y1 antagonist could potentially provide a safe and efficacious antithrombotic profile.
Apixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. Apixaban was evaluated in rat thrombosis and hemostasis models. Thrombosis was produced in the carotid artery by FeCl2 application, in the vena cava by either FeCl2 application or tissue factor injection, and in an arterial-venous shunt. Hemostasis was assessed using cuticle, renal cortex, and mesenteric artery bleeding times. Intravenous apixaban infusions of 0.1, 0.3, 1, and 3 mg/kg per hour increased the ex vivo prothrombin time to 1.24, 1.93, 2.75, and 3.98 times control, respectively. The 0.3, 1, and 3-mg/kg per hour doses inhibited thrombosis in all models. Concentrations for 50% thrombus reduction ranged from 1.84 to 7.57 microM. The 3-mg/kg per hour dose increased cuticle, renal, and mesenteric bleeding times to 1.92, 2.13, and 2.98 times control, respectively. Lower doses had variable (1 mg/kg per hour) or no effect (0.1, 0.3 mg/kg per hour) on hemostasis. Heparin's prolongation of renal and cuticle bleeding time was twice that of apixaban when administered at a dose that approximated apixaban (3 mg/kg per hour) efficacy in arterial thrombosis. In summary, apixaban was effective in a broad range of thrombosis models at doses producing modest increases in multiple bleeding time models.
Target levels of ex vivo inhibition of platelet aggregation (IPA) induced by adenosine diphosphate (ADP) that produce clinically relevant effects of clopidogrel, a P2Y12 antagonist, are unclear. We examined standard and modified IPA and P2Y12 receptor occupancy as predictors of antithrombotic (% thrombus weight reduction) and bleeding time (BT, fold-increase over control) effects of clopidogrel in rabbit models of carotid artery thrombosis and cuticle bleeding, respectively. Standard and modified IPA with 20 microM ADP were measured in the absence and presence of partial P2Y1 blockade, respectively. Clopidogrel maximally produced standard IPA of 57% +/- 5%, antithrombotic effect of 85% +/- 1%, BT increase of 6.0 +/- 0.4-fold and P2Y12 receptor occupancy of 87% +/- 5%. Surprisingly, a clopidogrel dose that produced a low standard IPA of 17% +/- 4% and P2Y12 receptor occupancy of 39% +/- 5% achieved a significant antithrombotic activity of 55% +/- 2% with a moderate increase in BT of 2.0 +/- 0.1-fold. This underestimation of clopidogrel efficacy by standard IPA was improved by measuring either modified IPA or P2Y12 receptor occupancy. These results suggest that in clopidogrel-treated rabbits, low standard IPA is associated with significant antithrombotic effects. Moreover, modified IPA and P2Y12 receptor occupancy appear to better predict the magnitude of clopidogrel's efficacy compared with standard IPA, which may be a better predictor of BT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.