Escherichia coli RcnR and Mycobacterium tuberculosis CsoR are the founding members of a recently identified, large family of bacterial metal-responsive DNA-binding proteins. RcnR controls the expression of the metal efflux protein RcnA only in response to Ni(II) and Co(II) ions. Here, the interaction of Ni(II) and Co(II) with wild-type and mutant RcnR proteins is examined to understand how these metals function as allosteric effectors. Both metals bind to RcnR with nanomolar affinity and stabilize the protein to denaturation. X-ray absorption and electron paramagnetic resonance spectroscopies reveal six-coordinate high-spin sites for each metal that contains a thiolate ligand. Experimental data support a tripartite N-terminal coordination motif (NH2-Xaa-NH-His) that is common for both metals. However, the Ni(II)- and Co(II)-RcnR complexes are shown to differ in the remaining coordination environment. Each metal coordinates a conserved Cys ligand but with distinct M-S distances. Co(II)-thiolate coordination has not been observed previously in Ni(II)-/Co(II)-responsive metalloregulators. The ability of RcnR to recruit ligands from the N-terminal region of the protein distinguishes it from CsoR, which uses a lower coordination geometry to bind Cu(I). These studies facilitate comparisons between Ni(II)-RcnR and NikR, the other Ni(II)-responsive transcriptional regulator in E. coli, to provide a better understanding how different nickel levels are sensed in E. coli. The characterization of the Ni(II)- and Co(II)-binding sites in RcnR, in combination with bioinformatics analysis of all RcnR/CsoR family members, identified a four amino acid fingerprint that likely defines ligand-binding specificity, leading to an emerging picture of the similarities and differences between different classes of RcnR/CsoR proteins.
SummaryThe nickel physiology of Escherichia coli is dominated by its Ni-Fe hydrogenase isozymes, which are expressed under anaerobic growth conditions. Hydrogenase activity in E. coli requires the NikAB-CDE nickel transporter, which is transcriptionally repressed by NikR in the presence of excess nickel. Recently, a nickel and cobalt-efflux protein, RcnA, was identified in E. coli. This study examines the effect of RcnA on nickel homeostasis in E. coli. Under nickel-limiting conditions, deletion of rcnA increased NikR activity in vivo. Nickel and cobalt-dependent regulation of rcnA expression required the newly identified transcriptional repressor RcnR (formerly YohL). Deletion of rcnR results in constitutive rcnA expression and a corresponding decrease in NikR activity. Purified RcnR binds directly to the rcnA promoter DNA fragment and this interaction is inhibited by nickel and cobalt. Nickel accumulation is affected differently among deletion strains with impaired nickel homeostasis. Surprisingly, in low nickel growth conditions rcnA expression is required for nickel import via NikABCDE. The data support a model with two distinct pools of nickel ions in E. coli. NikR bridges these two pools by controlling the levels of the hydrogenase-associated pool based on the nickel levels in the second pool.
Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.
The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein-protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization K d is measured to be ∼1 × 10 3 molecules/μm 2 , and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.Ras signaling | Ras assay
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.