Escherichia coli RcnR and Mycobacterium tuberculosis CsoR are the founding members of a recently identified, large family of bacterial metal-responsive DNA-binding proteins. RcnR controls the expression of the metal efflux protein RcnA only in response to Ni(II) and Co(II) ions. Here, the interaction of Ni(II) and Co(II) with wild-type and mutant RcnR proteins is examined to understand how these metals function as allosteric effectors. Both metals bind to RcnR with nanomolar affinity and stabilize the protein to denaturation. X-ray absorption and electron paramagnetic resonance spectroscopies reveal six-coordinate high-spin sites for each metal that contains a thiolate ligand. Experimental data support a tripartite N-terminal coordination motif (NH2-Xaa-NH-His) that is common for both metals. However, the Ni(II)- and Co(II)-RcnR complexes are shown to differ in the remaining coordination environment. Each metal coordinates a conserved Cys ligand but with distinct M-S distances. Co(II)-thiolate coordination has not been observed previously in Ni(II)-/Co(II)-responsive metalloregulators. The ability of RcnR to recruit ligands from the N-terminal region of the protein distinguishes it from CsoR, which uses a lower coordination geometry to bind Cu(I). These studies facilitate comparisons between Ni(II)-RcnR and NikR, the other Ni(II)-responsive transcriptional regulator in E. coli, to provide a better understanding how different nickel levels are sensed in E. coli. The characterization of the Ni(II)- and Co(II)-binding sites in RcnR, in combination with bioinformatics analysis of all RcnR/CsoR family members, identified a four amino acid fingerprint that likely defines ligand-binding specificity, leading to an emerging picture of the similarities and differences between different classes of RcnR/CsoR proteins.
SUMMARY Ca2+ is an essential and ubiquitous second messenger. Changes in cytosolic Ca2+ trigger events critical for tumorigenesis, such as cellular motility, proliferation and apoptosis. We show that an isoform of Secretory Pathway Ca2+-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuated basal Ca2+ levels and tumorigenicity. Contrary to its conventional role in Golgi Ca2+ sequestration, expression of SPCA2 increased Ca2+ influx by a mechanism dependent on the store-operated Ca2+ channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca2+ stores or STIM1 and STIM2 sensors, and uncoupled from Ca2+-ATPase activity of SPCA2. Binding of SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca2+ influx. Our findings reveal a signaling pathway in which Orai1-SPCA2 complex elicits constitutive store-independent Ca2+ signaling that promotes tumorigenesis.
Studies of the transcriptional repression of the Ni-specific permease encoded by the Pnik operon by Escherichia coli NikR using a LacZ reporter assay establish that the NikR response is specific to nickel in vivo. Toward understanding this metal ion-specific response, X-ray absorption spectroscopy (XAS) analysis of various M-NikR complexes (M = Co(II), Ni(II), Cu(II), Cu(I), and Zn(II)) was used to show that each high-affinity binding site metal adopts a unique structure, with Ni(II) and Cu(II) being the only two metal ions to feature planar four-coordinate complexes. The results are consistent with an allosteric mechanism whereby the geometry and ligand selection of the metal present in the high-affinity site induce a unique conformation in NikR that subsequently influences DNA binding. The influence of the high-affinity metal on protein structure was examined using hydrogen/deuterium (H/D) exchange detected by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Each NikR complex gives rise to differing amounts of H/D exchange; Zn(II)- and Co(II)-NikR are most like apo-NikR, while the exchange time course is substantially different for Ni(II) and to a lesser extent for Cu(II). In addition to the high-affinity metal binding site, E. coli NikR has a low-affinity metal-binding site that affects DNA binding affinity. We have characterized this low-affinity site using XAS in heterobimetallic complexes of NikR. When Cu(II) occupies the high-affinity site and Ni(II) occupies the low-affinity site, the Ni K-edge XAS spectra show that the Ni site is composed of six N/O-donors. A similar low-affinity site structure is found for the NikR complex when Co(II) occupies the low-affinity site and Ni(II) occupies the high-affinity site, except that one of the Co(II) ligands is a chloride derived from the buffer.
The clinical performance of The BD Onclarity HPV Assay with respect to histology end points was similar to HC2. Moreover, discordant analysis revealed improved performance of the BD assay with respect to ability to provide extended genotyping information and lack of cross-reactivity with low-risk HPV types associated with cellular abnormalities. The relative risks for CIN 3 disease for HPV 31 and HPV 33/58 (combined) were comparable to that of HPV 18 in this population, suggesting that these genotypes may warrant monitoring in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.