Human-mediated hybridization threatens many native species, but the effects of introgressive hybridization on life history expression are rarely quantified, especially in vertebrates. We quantified the effects of non-native rainbow trout admixture on important life history traits including growth and partial migration behavior in three populations of westslope cutthroat trout over five years. Rainbow trout admixture was associated with increased summer growth rates in all populations, and decreased spring growth rates in two populations with cooler spring temperatures. These results indicate that non-native admixture may increase growth under warmer conditions, but cutthroat trout have higher growth rates during cooler periods. Non-native admixture consistently increased expression of migratory behavior, suggesting that there is a genomic basis for life history differences between these species. Our results show that effects of interspecific hybridization on fitness traits Accepted Article This article is protected by copyright. All rights reserved can be the product of genotype-by-environment interactions even when there are minor differences in environmental optima between hybridizing species. These results also indicate that while environmentallymediated traits like growth may play an role in population-level consequences of admixture, strong genetic influences on migratory life history differences between these species likely explains the continued spread of non-native hybridization at the landscape-level, despite selection against hybrids at the population-level.
Compensatory growth—when individuals in poor condition grow rapidly to catch up to conspecifics—may be a mechanism that allows individuals to tolerate stressful environmental conditions, both abiotic and biotic. This phenomenon has been documented fairly widely in laboratory and field experiments, but evidence for compensatory growth in the wild is scarce. Cutthroat trout (Oncorhynchus clarkii subsp.) are cold‐water specialists that inhabit montane streams in western North America where seasonal conditions can be harsh and growth rates vary greatly among seasons. Understanding if individuals compensate for periods of reduced growth and body condition will improve understanding of the requirements of fish throughout their life‐cycle and across freshwater habitats. We quantified compensatory growth of juvenile cutthroat trout using extensive mark–recapture data from 11 stream populations (1,125 individuals) and two subspecies inhabiting a wide range of ecological settings in the northern Rocky Mountains, U.S.A. Our objectives were to determine how growth was linked across seasons and whether individuals behaviourally compensated for depressed body condition via emigration. Fish in relatively poor condition consistently demonstrated compensatory growth in mass during subsequent seasons. In contrast, fish in relatively better condition responded with positive growth in length during the summer signalling these fish may be better suited to headwater environments; no compensatory growth in length was found during the winter. Furthermore, there was no evidence that individual condition mediated migration tendencies of fish to seek more favourable habitat. Across a wide range of environmental conditions, we found consistent empirical support for compensatory growth in mass in the wild. A critical next step is to quantify how changing abiotic and biotic conditions influence the ability of stream fishes to compensate for locally or seasonally challenging conditions, thereby affecting long‐term resiliency, viability, and adaptation in the face of changing environmental conditions.
Hybridization between native and invasive species, a major cause of biodiversity loss, can spread rapidly even when hybrids have reduced fitness. This paradox suggests that hybrids have greater dispersal rates than non-hybridized individuals, yet this mechanism has not been empirically tested in animal populations. Here, we test if non-native genetic introgression increases reproductive dispersal using a human-mediated hybrid zone between native cutthroat trout ( Oncorhynchus clarkii ) and invasive rainbow trout ( Oncorhynchus mykiss ) in a large and connected river system. We quantified the propensity for individuals to migrate from natal rearing habitats (migrate), reproduce in non-natal habitats (stray), and the joint probability of dispersal as a function of genetic ancestry. Hybrid trout with predominantly non-native rainbow trout ancestry were more likely to migrate as juveniles and to stray as adults. Overall, hybrids with greater than 50% rainbow trout ancestry were 5.7 times more likely to disperse than native or hybrid trout with small amounts of rainbow trout ancestry. Our results show a genetic basis for increased dispersal in hybrids that is likely contributing to the rapid expansion of invasive hybridization between these species. Management actions that decrease the probability of hybrid dispersal may mitigate the harmful effects of invasive hybridization on native biodiversity.
The increasing availability and complexity of next-generation sequencing (NGS) data sets make ongoing training an essential component of conservation and population genetics research. A workshop entitled “ConGen 2018” was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.